62 research outputs found

    Retinal Axonal Loss Begins Early in the Course of Multiple Sclerosis and Is Similar between Progressive Phenotypes

    Get PDF
    To determine whether retinal axonal loss is detectable in patients with a clinically isolated syndrome (CIS), a first clinical demyelinating attack suggestive of multiple sclerosis (MS), and examine patterns of retinal axonal loss across MS disease subtypes.Spectral-domain Optical Coherence Tomography was performed in 541 patients with MS, including 45 with high-risk CIS, 403 with relapsing-remitting (RR)MS, 60 with secondary-progressive (SP)MS and 33 with primary-progressive (PP)MS, and 53 unaffected controls. Differences in retinal nerve fiber layer (RNFL) thickness and macular volume were analyzed using multiple linear regression and associations with age and disease duration were examined in a cross-sectional analysis. In eyes without a clinical history of optic neuritis (designated as "eyes without optic neuritis"), the total and temporal peripapillary RNFL was thinner in CIS patients compared to controls (temporal RNFL by -5.4 Β΅m [95% CI -0.9 to--9.9 Β΅m, p = 0.02] adjusting for age and sex). The total (p = 0.01) and temporal (p = 0.03) RNFL was also thinner in CIS patients with clinical disease for less than 1 year compared to controls. In eyes without optic neuritis, total and temporal RNFL thickness was nearly identical between primary and secondary progressive MS, but total macular volume was slightly lower in the primary progressive group (p<0.05).Retinal axonal loss is increasingly prominent in more advanced stages of disease--progressive MS>RRMS>CIS--with proportionally greater thinning in eyes previously affected by clinically evident optic neuritis. Retinal axonal loss begins early in the course of MS. In the absence of clinically evident optic neuritis, RNFL thinning is nearly identical between progressive MS subtypes

    Expression of Neurog1 Instead of Atoh1 Can Partially Rescue Organ of Corti Cell Survival

    Get PDF
    In the mammalian inner ear neurosensory cell fate depends on three closely related transcription factors, Atoh1 for hair cells and Neurog1 and Neurod1 for neurons. We have previously shown that neuronal cell fate can be altered towards hair cell fate by eliminating Neurod1 mediated repression of Atoh1 expression in neurons. To test whether a similar plasticity is present in hair cell fate commitment, we have generated a knockin (KI) mouse line (Atoh1KINeurog1) in which Atoh1 is replaced by Neurog1. Expression of Neurog1 under Atoh1 promoter control alters the cellular gene expression pattern, differentiation and survival of hair cell precursors in both heterozygous (Atoh1+/KINeurog1) and homozygous (Atoh1KINeurog1/KINeurog1) KI mice. Homozygous KI mice develop patches of organ of Corti precursor cells that express Neurog1, Neurod1, several prosensory genes and neurotrophins. In addition, these patches of cells receive afferent and efferent processes. Some cells among these patches form multiple microvilli but no stereocilia. Importantly, Neurog1 expressing mutants differ from Atoh1 null mutants, as they have intermittent formation of organ of Corti-like patches, opposed to a complete β€˜flat epithelium’ in the absence of Atoh1. In heterozygous KI mice co-expression of Atoh1 and Neurog1 results in change in fate and patterning of some hair cells and supporting cells in addition to the abnormal hair cell polarity in the later stages of development. This differs from haploinsufficiency of Atoh1 (Pax2cre; Atoh1f/+), indicating the effect of Neurog1 expression in developing hair cells. Our data suggest that Atoh1KINeurog1 can provide some degree of functional support for survival of organ of Corti cells. In contrast to the previously demonstrated fate plasticity of neurons to differentiate as hair cells, hair cell precursors can be maintained for a limited time by Neurog1 but do not transdifferentiate as neurons

    Selection of modalities, prescription, and technical issues in children on peritoneal dialysis

    Get PDF
    Peritoneal dialysis (PD) is widely employed as a dialytic therapy for uraemic children, especially in its automated form (APD), that is associated with less burden of care on patient and family than continuous ambulatory PD. Since APD offers a wide range of treatment options, based on intermittent and continuous regimens, prescription can be individualized according to patient’s age, body size, residual renal function, nutritional intake, and growth-related metabolic needs. Transport capacity of the peritoneal membrane of each individual patient should be assessed, and regularly monitored, by means of standardized peritoneal function tests validated in pediatric patients. To ensure maximum recruitment of peritoneal exchange area, fill volume should be scaled to body surface area and adapted to each patient, according to clinical tolerance and intraperitoneal pressure. PD solutions should be employed according to their biocompatibility and potential ultrafiltration capacity; new pH-neutral, glucose-free solutions can be used in an integrated way in separate dwells, or by appropriately mixing during the same dialytic session. Kinetic modelling software programs may help in the tailoring of PD prescription to individual patients’ characteristics and needs. Owing to advances in the technology of new APD machines, greater programming flexibility, memorized delivery control, and tele-dialysis are currently possible

    Optical imaging in vivo with a focus on paediatric disease: technical progress, current preclinical and clinical applications and future perspectives

    Get PDF
    To obtain information on the occurrence and location of molecular events as well as to track target-specific probes such as antibodies or peptides, drugs or even cells non-invasively over time, optical imaging (OI) technologies are increasingly applied. Although OI strongly contributes to the advances made in preclinical research, it is so far, with the exception of optical coherence tomography (OCT), only very sparingly applied in clinical settings. Nevertheless, as OI technologies evolve and improve continuously and represent relatively inexpensive and harmful methods, their implementation as clinical tools for the assessment of children disease is increasing. This review focuses on the current preclinical and clinical applications as well as on the future potential of OI in the clinical routine. Herein, we summarize the development of different fluorescence and bioluminescence imaging techniques for microscopic and macroscopic visualization of microstructures and biological processes. In addition, we discuss advantages and limitations of optical probes with distinct mechanisms of target-detection as well as of different bioluminescent reporter systems. Particular attention has been given to the use of near-infrared (NIR) fluorescent probes enabling observation of molecular events in deeper tissue

    Incidence of and risk factors for motor neurone disease in UK women: a prospective study.

    Get PDF
    BACKGROUND: Motor neuron disease (MND) is a severe neurodegenerative disease with largely unknown etiology. Most epidemiological studies are hampered by small sample sizes and/or the retrospective collection of information on behavioural and lifestyle factors. METHODS: 1.3 million women from the UK Million Women Study, aged 56 years on average at recruitment, were followed up for incident and/or fatal MND using NHS hospital admission and mortality data. Adjusted relative risks were calculated using Cox regression models. FINDINGS: During follow-up for an average of 9Β·2 years, 752 women had a new diagnosis of MND. Age-specific rates increased with age, from 1Β·9 (95% CI 1Β·3 - 2Β·7) to 12Β·5 (95% CI 10Β·2 - 15Β·3) per 100,000 women aged 50-54 to 70-74, respectively, giving a cumulative risk of diagnosis with the disease of 1Β·74 per 1000 women between the ages of 50 and 75 years. There was no significant variation in risk of MND with region of residence, socio-economic status, education, height, alcohol use, parity, use of oral contraceptives or hormone replacement therapy. Ever-smokers had about a 20% greater risk than never smokers (RR 1Β·19 95% CI 1Β·02 to 1Β·38, p = 0Β·03). There was a statistically significant reduction in risk of MND with increasing body mass index (p(for trend) = 0Β·009): obese women (body mass index, 30 kg/m(2) or more) had a 20% lower risk than women of normal body mass index (20 to <25 Kg/m(2))(RR 0Β·78 95% CI 0Β·65-0Β·94; p = 0Β·03). This effect persisted after exclusion of the first three years of follow-up. INTERPRETATION: MND incidence in UK women rises rapidly with age, and an estimated 1 in 575 women are likely to be affected between the ages of 50 and 75 years. Smoking slightly increases the risk of MND, and adiposity in middle age is associated with a lower risk of the disease

    Non-accidental Trauma

    No full text
    Non-accidental trauma (NAT) is a leading cause of childhood traumatic injury in the United States. Retinal findings in NAT are common and well described, including extensive retinal hemorrhages in multiple layers, retinoschisis, perimacular retinal folds, vitreous and optic nerve hemorrhage. Management keystones include a multidisciplinary approach to the patient’s multiple comorbidities, careful photographic and angiographic documentation of ophthalmic findings, amblyopia prevention and visual development, as well as interventions including photocoagulation and vitrectomy
    • …
    corecore