163 research outputs found

    Concurrent chemoradiotherapy with low dose weekly gemcitabine in stage III non-small cell lung cancer

    Get PDF
    BACKGROUND: Combined chemoradiotherapy (CRT) is the treatment of choice for stage III NSCLC. Gemcitabine (G) is a novel deoxycitidine analogue that has been proven to be a potent radiosensitizer. Twenty-two consecutive patients were treated with concurrent CRT to demonstrate the tolerability and efficacy of low dose G given weekly as radiosensitizer in stage III NSCLC. METHODS: Patients with KPS ≄70, adequate bone marrow reserve, with no prior radiotherapy (RT) and surgery were included. Eighteen patients had received prior induction chemotherapy (CT). G (75 mg/m(2)/week) was infused over 1 hour for 6 weeks. Thoracic RT was given two hours later over 6 weeks at 1.8 Gy/day fractions (total dose of 61.2 Gy). Pulmonary toxicity was evaluated with computed tomography scans in 6 weeks. RESULTS: Median age was 60 years (range, 48–75), median follow-up was 15 months (range, 2–40). Sixty-eight percent of patients were male and median KPS score was 90. Conformal 3D-RT planning was used in 64% of patients. G was given for a median of 5 weeks (range 1–9). Twelve patients (54.6%) received all planned CT. G was stopped because of intolerance in 6 and death in 2 patients. Seven patients (31.8%) had radiation pneumonitis. Twenty patients were evaluated for overall response, 1 patient (4.5%) had clinical CR, 81.8% had PR while 9.5% had SD. Median overall survival (OS) was 14 ± 5 months (95% CI 3–25). One- and 2-year OS rates were 55% and 38%. Sixteen patients died of disease-related events (6 with progression of primary tumor, 8 due to metastatic disease), 2 patients died of other causes. One- and 2-year progression-free survival and local control rates were 56%, 27% and 79%, 51%, respectively. CONCLUSION: G might be used as radiosensitizer for patients with stage III NSCLC who could not receive full doses CT with concurrent RT

    Semi-automatic algorithm for construction of the left ventricular area variation curve over a complete cardiac cycle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two-dimensional echocardiography (2D-echo) allows the evaluation of cardiac structures and their movements. A wide range of clinical diagnoses are based on the performance of the left ventricle. The evaluation of myocardial function is typically performed by manual segmentation of the ventricular cavity in a series of dynamic images. This process is laborious and operator dependent. The automatic segmentation of the left ventricle in 4-chamber long-axis images during diastole is troublesome, because of the opening of the mitral valve.</p> <p>Methods</p> <p>This work presents a method for segmentation of the left ventricle in dynamic 2D-echo 4-chamber long-axis images over the complete cardiac cycle. The proposed algorithm is based on classic image processing techniques, including time-averaging and wavelet-based denoising, edge enhancement filtering, morphological operations, homotopy modification, and watershed segmentation. The proposed method is semi-automatic, requiring a single user intervention for identification of the position of the mitral valve in the first temporal frame of the video sequence. Image segmentation is performed on a set of dynamic 2D-echo images collected from an examination covering two consecutive cardiac cycles.</p> <p>Results</p> <p>The proposed method is demonstrated and evaluated on twelve healthy volunteers. The results are quantitatively evaluated using four different metrics, in a comparison with contours manually segmented by a specialist, and with four alternative methods from the literature. The method's intra- and inter-operator variabilities are also evaluated.</p> <p>Conclusions</p> <p>The proposed method allows the automatic construction of the area variation curve of the left ventricle corresponding to a complete cardiac cycle. This may potentially be used for the identification of several clinical parameters, including the area variation fraction. This parameter could potentially be used for evaluating the global systolic function of the left ventricle.</p

    Genetic Factors Influence the Clustering of Depression among Individuals with Lower Socioeconomic Status

    Get PDF
    Objective: To investigate the extent to which shared genetic factors can explain the clustering of depression among individuals with lower socioeconomic status, and to examine if neuroticism or intelligence are involved in these pathways. Methods: In total 2,383 participants (1,028 men and 1,355 women) of the Erasmus Rucphen Family Study were assessed with the Center for Epidemiologic Studies Depression Scale (CES-D) and the Hospital Anxiety and Depression Scale (HADSD). Socioeconomic status was assessed as the highest level of education obtained. The role of shared genetic factors was quantified by estimating genetic correlations (rG) between symptoms of depression and education level, with and without adjustment for premorbid intelligence and neuroticism scores. Results: Higher level of education was associated with lower depression scores (partial correlation coefficient 20.09 for CESD and 20.17 for HADS-D). Significant genetic correlations were found between education and bo

    Genetic Analysis of Human Traits In Vitro: Drug Response and Gene Expression in Lymphoblastoid Cell Lines

    Get PDF
    Lymphoblastoid cell lines (LCLs), originally collected as renewable sources of DNA, are now being used as a model system to study genotype–phenotype relationships in human cells, including searches for QTLs influencing levels of individual mRNAs and responses to drugs and radiation. In the course of attempting to map genes for drug response using 269 LCLs from the International HapMap Project, we evaluated the extent to which biological noise and non-genetic confounders contribute to trait variability in LCLs. While drug responses could be technically well measured on a given day, we observed significant day-to-day variability and substantial correlation to non-genetic confounders, such as baseline growth rates and metabolic state in culture. After correcting for these confounders, we were unable to detect any QTLs with genome-wide significance for drug response. A much higher proportion of variance in mRNA levels may be attributed to non-genetic factors (intra-individual variance—i.e., biological noise, levels of the EBV virus used to transform the cells, ATP levels) than to detectable eQTLs. Finally, in an attempt to improve power, we focused analysis on those genes that had both detectable eQTLs and correlation to drug response; we were unable to detect evidence that eQTL SNPs are convincingly associated with drug response in the model. While LCLs are a promising model for pharmacogenetic experiments, biological noise and in vitro artifacts may reduce power and have the potential to create spurious association due to confounding

    Gemcitabine and Arabinosylcytosin Pharmacogenomics: Genome-Wide Association and Drug Response Biomarkers

    Get PDF
    Cancer patients show large individual variation in their response to chemotherapeutic agents. Gemcitabine (dFdC) and AraC, two cytidine analogues, have shown significant activity against a variety of tumors. We previously used expression data from a lymphoblastoid cell line-based model system to identify genes that might be important for the two drug cytotoxicity. In the present study, we used that same model system to perform a genome-wide association (GWA) study to test the hypothesis that common genetic variation might influence both gene expression and response to the two drugs. Specifically, genome-wide single nucleotide polymorphisms (SNPs) and mRNA expression data were obtained using the Illumina 550K¼ HumanHap550 SNP Chip and Affymetrix U133 Plus 2.0 GeneChip, respectively, for 174 ethnically-defined “Human Variation Panel” lymphoblastoid cell lines. Gemcitabine and AraC cytotoxicity assays were performed to obtain IC50 values for the cell lines. We then performed GWA studies with SNPs, gene expression and IC50 of these two drugs. This approach identified SNPs that were associated with gemcitabine or AraC IC50 values and with the expression regulation for 29 genes or 30 genes, respectively. One SNP in IQGAP2 (rs3797418) was significantly associated with variation in both the expression of multiple genes and gemcitabine and AraC IC50. A second SNP in TGM3 (rs6082527) was also significantly associated with multiple gene expression and gemcitabine IC50. To confirm the association results, we performed siRNA knock down of selected genes with expression that was associated with rs3797418 and rs6082527 in tumor cell and the knock down altered gemcitabine or AraC sensitivity, confirming our association study results. These results suggest that the application of GWA approaches using cell-based model systems, when combined with complementary functional validation, can provide insights into mechanisms responsible for variation in cytidine analogue response

    DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines

    Get PDF
    BACKGROUND: DNA methylation is an essential epigenetic mechanism involved in gene regulation and disease, but little is known about the mechanisms underlying inter-individual variation in methylation profiles. Here we measured methylation levels at 22,290 CpG dinucleotides in lymphoblastoid cell lines from 77 HapMap Yoruba individuals, for which genome-wide gene expression and genotype data were also available. RESULTS: Association analyses of methylation levels with more than three million common single nucleotide polymorphisms (SNPs) identified 180 CpG-sites in 173 genes that were associated with nearby SNPs (putatively in cis, usually within 5 kb) at a false discovery rate of 10%. The most intriguing trans signal was obtained for SNP rs10876043 in the disco-interacting protein 2 homolog B gene (DIP2B, previously postulated to play a role in DNA methylation), that had a genome-wide significant association with the first principal component of patterns of methylation; however, we found only modest signal of trans-acting associations overall. As expected, we found significant negative correlations between promoter methylation and gene expression levels measured by RNA-sequencing across genes. Finally, there was a significant overlap of SNPs that were associated with both methylation and gene expression levels. CONCLUSIONS: Our results demonstrate a strong genetic component to inter-individual variation in DNA methylation profiles. Furthermore, there was an enrichment of SNPs that affect both methylation and gene expression, providing evidence for shared mechanisms in a fraction of genes

    Current strategies for treatment of intervertebral disc degeneration: substitution and regeneration possibilities

    Get PDF
    Background: Intervertebral disc degeneration has an annual worldwide socioeconomic impact masked as low back pain of over 70 billion euros. This disease has a high prevalence over the working age class, which raises the socioeconomic impact over the years. Acute physical trauma or prolonged intervertebral disc mistreatment triggers a biochemical negative tendency of catabolic-anabolic balance that progress to a chronic degeneration disease. Current biomedical treatments are not only ineffective in the long-run, but can also cause degeneration to spread to adjacent intervertebral discs. Regenerative strategies are desperately needed in the clinics, such as: minimal invasive nucleus pulposus or annulus fibrosus treatments, total disc replacement, and cartilaginous endplates decalcification. Main Body: Herein, it is reviewed the state-of-the-art of intervertebral disc regeneration strategies from the perspective of cells, scaffolds, or constructs, including both popular and unique tissue engineering approaches. The premises for cell type and origin selection or even absence of cells is being explored. Choice of several raw materials and scaffold fabrication methods are evaluated. Extensive studies have been developed for fully regeneration of the annulus fibrosus and nucleus pulposus, together or separately, with a long set of different rationales already reported. Recent works show promising biomaterials and processing methods applied to intervertebral disc substitutive or regenerative strategies. Facing the abundance of studies presented in the literature aiming intervertebral disc regeneration it is interesting to observe how cartilaginous endplates have been extensively neglected, being this a major source of nutrients and water supply for the whole disc. Conclusion: Severalinnovative avenues for tackling intervertebral disc degeneration are being reported ñ from acellular to cellular approaches, but the cartilaginous endplates regeneration strategies remain unaddressed. Interestingly, patient-specific approaches show great promise in respecting patient anatomy and thus allow quicker translation to the clinics in the near future.The authors would like to acknowledge the support provided by the Portuguese Foundation for Science and Technology (FCT) through the project EPIDisc (UTAP-EXPL/BBBECT/0050/2014), funded in the Framework of the “International Collaboratory for Emerging Technologies, CoLab”, UT Austin|Portugal Program. The FCT distinctions attributed to J. Miguel Oliveira (IF/00423/2012 and IF/01285/ 2015) and J. Silva-Correia (IF/00115/2015) under the Investigator FCT program are also greatly acknowledged.info:eu-repo/semantics/publishedVersio
    • 

    corecore