182 research outputs found

    Haemoglobin glycation index and risk for diabetes-related complications in the Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) trial

    Get PDF
    AIMS/HYPOTHESIS: Previous studies have suggested that the haemoglobin glycation index (HGI) can be used as a predictor of diabetes-related complications in individuals with type 1 and type 2 diabetes. We investigated whether HGI was a predictor of adverse outcomes of intensive glucose lowering and of diabetes-related complications in general, using data from the Action in Diabetes and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE) trial. METHODS: We studied participants in the ADVANCE trial with data available for baseline HbA1c and fasting plasma glucose (FPG) (n = 11,083). HGI is the difference between observed HbA1c and HbA1c predicted from a simple linear regression of HbA1c on FPG. Using Cox regression, we investigated the association between HGI, both categorised and continuous, and adverse outcomes, considering treatment allocation (intensive or standard glucose control) and compared prediction of HGI and HbA1c. RESULTS: Intensive glucose control lowered mortality risk in individuals with high HGI only (HR 0.74 [95% CI 0.61, 0.91]; p = 0.003), while there was no difference in the effect of intensive treatment on mortality in those with high HbA1c. Irrespective of treatment allocation, every SD increase in HGI was associated with a significant risk increase of 14-17% for macrovascular and microvascular disease and mortality. However, when adjusted for identical covariates, HbA1c was a stronger predictor of these outcomes than HGI. CONCLUSIONS/INTERPRETATION: HGI predicts risk for complications in ADVANCE participants, irrespective of treatment allocation, but no better than HbA1c. Individuals with high HGI have a lower risk for mortality when on intensive treatment. Given the discordant results and uncertain relevance beyond HbA1c, clinical use of HGI in type 2 diabetes cannot currently be recommended

    Identification of a Circadian Clock-Controlled Neural Pathway in the Rabbit Retina

    Get PDF
    Background: Although the circadian clock in the mammalian retina regulates many physiological processes in the retina, it is not known whether and how the clock controls the neuronal pathways involved in visual processing. Methodology/Principal Findings: By recording the light responses of rabbit axonless (A-type) horizontal cells under darkadapted conditions in both the day and night, we found that rod input to these cells was substantially increased at night under control conditions and following selective blockade of dopamine D2, but not D1, receptors during the day, so that the horizontal cells responded to very dim light at night but not in the day. Using neurobiotin tracer labeling, we also found that the extent of tracer coupling between rabbit rods and cones was more extensive during the night, compared to the day, and more extensive in the day following D 2 receptor blockade. Because A-type horizontal cells make synaptic contact exclusively with cones, these observations indicate that the circadian clock in the mammalian retina substantially increases rod input to A-type horizontal cells at night by enhancing rod-cone coupling. Moreover, the clock-induced increase in D2 receptor activation during the day decreases rod-cone coupling so that rod input to A-type horizontal cells is minimal. Conclusions/Significance: Considered together, these results identify the rod-cone gap junction as a key site in mammals through which the retinal clock, using dopamine activation of D2 receptors, controls signal flow in the day and night fro

    HSPG-Binding Peptide Corresponding to the Exon 6a-Encoded Domain of VEGF Inhibits Tumor Growth by Blocking Angiogenesis in Murine Model

    Get PDF
    Vascular endothelial growth factor VEGF165 is a critical element for development of the vascular system in physiological and pathological angiogenesis. VEGF isoforms have different affinities for heparan sulphate proteoglycan (HSPG) as well as for VEGF receptors; HSPGs are important regulators in vascular development. Therefore, inhibition of interactions between VEGF and HSPGs may prevent angiogenesis. Here, we demonstrate that an HSPG-binding synthetic peptide, corresponding to exon 6a-encoded domain of VEGF gene, has anti-angiogenic property. This 20 amino acids synthetic peptide prevents VEGF165 binding to several different cell types, mouse embryonic sections and inhibits endothelial cell migration, despite its absence in VEGF165 sequence. Our in vivo anti-tumor studies show that the peptide inhibits tumor growth in both mouse Lewis-Lung Carcinoma and human Liposarcoma tumor-bearing animal models. This is the first evidence that a synthetic VEGF fragment corresponding to exon 6a has functional antagonism both in vitro and in vivo. We conclude that the above HPSG binding peptide (6a-P) is a potent inhibitor of angiogenesis-dependent diseases

    Novel Expression Patterns of Metabotropic Glutamate Receptor 6 in the Zebrafish Nervous System

    Get PDF
    The metabotropic glutamate receptor 6 (mGluR6 or GRM6) belongs to the class III of the metabotropic glutamate receptor family. It is the only known mGluR that mediates direct synaptic transmission in the nervous system and is thought to mediate the ON-response in the ON-pathway of the vertebrate retina. Phylogenetic and gene structure analysis indicated that the zebrafish genome harbours two mglur6 paralogs, mglur6a and mglur6b. Besides expression in the inner nuclear layer and distinct regions in the brain, both mglur6 paralogs are expressed in ganglion cells of the retina, an expression pattern which can also be observed in the downstream effector molecules gnaoa and gnaob. This unexpected expression pattern is consistent with immunohistological labeling using a peptide antibody specific for the mGluR6b paralog. These expression patterns contradict the existing view that mGluR6 is solely located on ON-bipolar cells where it functions in signal transmission. Consistent with expression in ON-bipolar cells, we report a decreased b-wave amplitude in the electroretinogram after morpholino-based downregulation of mGluR6b, showing a function in the ON response. Our data suggest more widespread functions of mGluR6 mediated signaling in the central nervous system, possibly including sign reversing synapses in the inner retina

    Pain acceptance and personal control in pain relief in two maternity care models: a cross-national comparison of Belgium and the Netherlands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A cross-national comparison of Belgian and Dutch childbearing women allows us to gain insight into the relative importance of pain acceptance and personal control in pain relief in 2 maternity care models. Although Belgium and the Netherlands are neighbouring countries sharing the same language, political system and geography, they are characterised by a different organisation of health care, particularly in maternity care. In Belgium the medical risks of childbirth are emphasised but neutralised by a strong belief in the merits of the medical model. Labour pain is perceived as a needless inconvenience easily resolved by means of pain medication. In the Netherlands the midwifery model of care defines childbirth as a normal physiological process and family event. Labour pain is perceived as an ally in the birth process.</p> <p>Methods</p> <p>Women were invited to participate in the study by independent midwives and obstetricians during antenatal visits in 2004-2005. Two questionnaires were filled out by 611 women, one at 30 weeks of pregnancy and one within the first 2 weeks after childbirth either at home or in a hospital. However, only women having a hospital birth without obstetric intervention (N = 327) were included in this analysis. A logistic regression analysis has been performed.</p> <p>Results</p> <p>Labour pain acceptance and personal control in pain relief render pain medication use during labour less likely, especially if they occur together. Apart from this general result, we also find large country differences. Dutch women with a normal hospital birth are six times less likely to use pain medication during labour, compared to their Belgian counterparts. This country difference cannot be explained by labour pain acceptance, since - in contrast to our working hypothesis - Dutch and Belgian women giving birth in a hospital setting are characterised by a similar labour pain acceptance. Our findings suggest that personal control in pain relief can partially explain the country differences in coping with labour pain. For Dutch women we find that the use of pain medication is lowest if women experience control over the reception of pain medication and have a positive attitude towards labour pain. In Belgium however, not personal control over the use of pain relief predicts the use of pain medication, but negative attitudes towards labour.</p> <p>Conclusions</p> <p>Apart from individual level determinants, such as length of labour or pain acceptance, our findings suggest that the maternity care context is of major importance in the study of the management of labour pain. The pain medication use in Belgian hospital maternity care is high and is very sensitive to negative attitudes towards labour pain. In the Netherlands, on the contrary, pain medication use is already low. This can partially be explained by a low degree of personal control in pain relief, especially when co-occurring with positive pain attitudes.</p

    Transcriptomic Characterization of Temperature Stress Responses in Larval Zebrafish

    Get PDF
    Temperature influences nearly all biochemical, physiological and life history activities of fish, but the molecular mechanisms underlying the temperature acclimation remains largely unknown. Previous studies have identified many temperature-regulated genes in adult tissues; however, the transcriptional responses of fish larvae to temperature stress are not well understood. In this study, we characterized the transcriptional responses in larval zebrafish exposed to cold or heat stress using microarray analysis. In comparison with genes expressed in the control at 28°C, a total of 2680 genes were found to be affected in 96 hpf larvae exposed to cold (16°C) or heat (34°C) for 2 and 48h and most of these genes were expressed in a temperature-specific and temporally regulated manner. Bioinformatic analysis identified multiple temperature-regulated biological processes and pathways. Biological processes overrepresented among the earliest genes induced by temperature stress include regulation of transcription, nucleosome assembly, chromatin organization and protein folding. However, processes such as RNA processing, cellular metal ion homeostasis and protein transport and were enriched in genes up-regulated under cold exposure for 48 h. Pathways such as mTOR signalling, p53 signalling and circadian rhythm were enriched among cold-induced genes, while adipocytokine signalling, protein export and arginine and praline metabolism were enriched among heat-induced genes. Although most of these biological processes and pathways were specifically regulated by cold or heat, common responses to both cold and heat stresses were also found. Thus, these findings provide new interesting clues for elucidation of mechanisms underlying the temperature acclimation in fish

    Quantification of ocean heat uptake from changes in atmospheric O2 and CO2 composition

    Get PDF
    The ocean is the main source of thermal inertia in the climate system. Ocean heat uptake during recent decades has been quantified using ocean temperature measurements. However, these estimates all use the same imperfect ocean dataset and share additional uncertainty due to sparse coverage, especially before 2007. Here, we provide an independent estimate by using measurements of atmospheric oxygen (O2) and carbon dioxide (CO2) – levels of which increase as the ocean warms and releases gases – as a whole ocean thermometer. We show that the ocean gained 1.29 ± 0.79 × 1022 Joules of heat per year between 1991 and 2016, equivalent to a planetary energy imbalance of 0.80 ± 0.49 W watts per square metre of Earth’s surface. We also find that the ocean-warming effect that led to the outgassing of O2 and CO2 can be isolated from the direct effects of anthropogenic emissions and CO2 sinks. Our result – which relies on high-precision O2 atmospheric measurements dating back to 1991 – leverages an integrative Earth system approach and provides much needed independent confirmation of heat uptake estimated from ocean data

    High aboveground carbon stock of African tropical montane forests

    Get PDF
    Tropical forests store 40–50 per cent of terrestrial vegetation carbon1. However, spatial variations in aboveground live tree biomass carbon (AGC) stocks remain poorly understood, in particular in tropical montane forests2. Owing to climatic and soil changes with increasing elevation3, AGC stocks are lower in tropical montane forests compared with lowland forests2. Here we assemble and analyse a dataset of structurally intact old-growth forests (AfriMont) spanning 44 montane sites in 12 African countries. We find that montane sites in the AfriMont plot network have a mean AGC stock of 149.4 megagrams of carbon per hectare (95% confidence interval 137.1–164.2), which is comparable to lowland forests in the African Tropical Rainforest Observation Network4 and about 70 per cent and 32 per cent higher than averages from plot networks in montane2,5,6 and lowland7 forests in the Neotropics, respectively. Notably, our results are two-thirds higher than the Intergovernmental Panel on Climate Change default values for these forests in Africa8. We find that the low stem density and high abundance of large trees of African lowland forests4 is mirrored in the montane forests sampled. This carbon store is endangered: we estimate that 0.8 million hectares of old-growth African montane forest have been lost since 2000. We provide country-specific montane forest AGC stock estimates modelled from our plot network to help to guide forest conservation and reforestation interventions. Our findings highlight the need for conserving these biodiverse9,10 and carbon-rich ecosystems
    corecore