22 research outputs found

    Influence of diesel surrogates on the behavior of simplified spray models

    Get PDF
    Numerous experimental investigations make use of diesel surrogates to make the computational time reasonable. In the few studies where measured (surrogate and real diesel) and computed (surrogate only) results have been compared, the selection methodology for the surrogate constituent compounds and the measures taken to validate the chemical kinetic models are not discussed, and the range of operating conditions used is often small. Additionally, most simplified models use tuning variables to fit model results to measurements. This work makes the comparison between some frequently used diesel surrogates using a simple 1D vaporizing spray model, with the spray cone angle as the tuning parameter. Results show that liquid length and fuel fraction strongly depend on the physical properties of the used fuel for a fixed spray angle. These parameters are important for modeling auto-ignition and pollutant formation. The spray angle is varied till the spray length is the same for each surrogate. Results show important differences between other spray parameters such as local mixture fraction and axial velocity

    Study of mass and momentum transfer in diesel sprays base on X-ray mass distribution measurements and on a theoretical derivation

    Full text link
    [EN] In this paper, a research aimed at quantifying mass and momentum transfer in the near-nozzle field of diesel sprays injected into stagnant ambient air is reported. The study combines X-ray measurements for two different nozzles and axial positions, which provide mass distributions in the spray, with a theoretical model based on momentum flux conservation, which was previously validated. This investigation has allowed the validation of Gaussian profiles for local fuel concentration and velocity near the nozzle exit, as well as the determination of Schmidt number at realistic diesel spray conditions. This information could be very useful for those who are interested in spray modeling, especially at high-pressure injection conditions. © 2010 Springer-Verlag.This work was partly sponsored by "Vicerrectorado de Investigacion, Desarrollo e Innovacion'' of the "Universidad Politecnica de Valencia'' in the frame of the project "Estudio del flujo en el interior de toberas de inyeccion Diesel'', reference no. 3150 and by "Generalitat Valenciana'' in the frame of the project with the same title and reference GV/2009/031. This support is gratefully acknowledged by the authors.Desantes, J.; Salvador Rubio, FJ.; López, JJ.; De La Morena, J. (2011). Study of mass and momentum transfer in diesel sprays base on X-ray mass distribution measurements and on a theoretical derivation. Experiments in Fluids. 50(2):233-246. https://doi.org/10.1007/s00348-010-0919-8S233246502Abramovich GN (1963) The theory of turbulent jets. MIT Press, Cambridge, MAAdler D, Lyn WT (1969) The evaporation and mixing of a liquid fuel spray in a Diesel air swirl. Proc Instn Mech Eng 184:171–180Coghe A, Cossali GE (1994) Phase Doppler characterisation of a Diesel spray injected into a high density gas under vaporisation regimes. In: 7th international symposium on application of laser techniques to fluid mechanics, LisbonCorreas D (1998) Theoretical and experimental study of isothermal Diesel free sprays (in Spanish). PhD Thesis, Universidad Politécnica de ValenciaCossali GE (2001) An integral model for gas entrainment into full cone sprays. J Fluid Mech 439:353–366Dent JC (1971) A basis for the comparison of various experimental methods for studying spray penetration. SAE Paper 710571Desantes JM, Payri R, Salvador FJ, Gil A (2006a) Deduction and validation of a theoretical model for a free diesel Spray. Fuel 85:910–917Desantes JM, Arrègle J, López JJ, Cronhjort A (2006b) Scaling laws for free turbulent gas jets and Diesel-like sprays. Atomization Spray 16:443–473Desantes JM, Payri R, García JM, Salvador FJ (2007) A contribution to the understanding of isothermal diesel spray dynamics. Fuel 86:1093–1101Dumouchel C (2008) On the experimental investigation on primary atomization of liquid streams. Exp Fluids 45:371–422Heimgärtner C, Leipertz A (2000) of the primary spray break-up close to the nozzle of a common-rail high pressure diesel injection system. SAE Paper 2000-01-1799Hinze JO (1975) Turbulence. McGraw Hill, New YorkHiroyasu H, Arai M (1990) Structures of fuel sprays in diesel engines. SAE Paper 900475Jawad B, Gulari E, Henein NA (1992) Characteristics of intermittent fuel sprays. Combust Flame 88:384–396Lefèbvre AH (1989) Atomization and sprays. Hemisphere, New YorkLeick P, Riedel T, Bittlinger G, Powell CF, Kastengren AL, Wang J (2007) X-Ray measurements of the mass distribution in the dense primary break-up region of the spray from a standard multi-hole common-rail diesel injection system. In: Proc 21st ILASS (Europe)Linne M, Paciaroni M, Hall T, Parker T (2006) Ballistic imaging of the near field in a diesel spray. Exp Fluids 40:836–846Naber J, Siebers DL (1996) Effects of gas density and vaporisation on penetration and dispersion of diesel sprays. SAE Paper 960034Payri F, Bermúdez V, Payri R, Salvador FJ (2004) The influence of cavitation on the internal flow and the Spray characteristics in diesel injection nozzles. Fuel 83:419–431Payri R, García JM, Salvador FJ, Gimeno J (2005) Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics. Fuel 84:551–561Payri R, Tormos B, Salvador FJ, Araneo L (2008) Spray droplet velocity characterization for convergent nozzles with three different diameters. Fuel 87:3176–3182Post S, Iyer V, Abraham J (2000) A study of near-field entrainment in gas jets and sprays under diesel conditions. ASME J Fluids Eng 122:385–395Prasad CMV, Kar S (1976) An investigation on the diffusion of momentum and mass of fuel in a diesel fuel spray. ASME J Eng Power 76-DGP-1:1–11Rajaratnam N (1976) Turbulent jets. Elsevier, AmsterdamRamirez AI, Som S, Aggarwal SK, Kastengren AL, El-Hannouny EM, Longman DE, Powell CF (2009) Quantitative X-ray measurements of high-pressure fuel sprays from a production heavy duty diesel injector. Exp Fluids 47:119–134Reitz RD, Bracco FV (1982) Mechanism of atomisation of a liquid jet. Phys Fluids 25(10):1730–1742Ricou FP, Spalding DB (1961) Measurements of entrainment by axisymmetrical turbulent jets. J Fluid Mech 11:21–32Rife J, Heywood JB (1974) Photographic and performance studies of diesel combustion with a rapid compression machine. SAE Paper 740948Roisman IV, Tropea C (2001) Flux measurements in sprays using phase doppler techniques. Atomization Spray 11:667–699Roisman IV, Araneo L, Tropea C (2007) Effect of ambient pressure on penetration of a diesel spray. Int J Multiphase Flow 33(8):904–920Saliba R, Baz I, Champoussin JC, Lance M, Marié JL (2004) Cavitation effect on the near nozzle spray development in high-pressure diesel injection. In: Proc 19th ILASS (Europe)Schlichting H (1978) Boundary layer theory. McGraw Hill, New YorkSinnamon JF, Lancaster DR, Stiener JC (1980) An experimental and analytical study of engine fuel spray trajectories. SAE Paper 800135Sou A, Hosokawa S, Tomiyama A (2007) Effects of cavitation in a nozzle on liquid jet atomization. Int J Heat Mass Tran 50(17–18):3575–3582Spalding DB (1979) Combustion and mass transfer. Pergamon Press, New YorkSubramaniam S (2001) Statistical modelling of a spray as using the droplet distribution function. Phys Fluids 13(3):624–642Tanner FX, Feigl A, Ciatti SA, Powell CF, Cheong S-K, Liu J, Wang J (2006) Structure of high-velocity dense sprays in the near-nozzle region. Atomization Spray 16:579–597Way RJB (1977) Investigation of interaction between swirl and jets in direct injection diesel engines using a water model. SAE Paper 770412Wu KJ, Santavicca DA, Bracco FV (1984) LDV measurements of drop velocity in diesel-type sprays. AAIA J 22(9):1263–1270Wu KJ, Reitz RD, Bracco FV (1986) Measurements of drop size at the spray edge near the nozzle in atomising liquid jets. Phys Fluids 29(4):941–951Yue Y, Powell CF, Poola R, Wang J, Schaller JK (2001) Quantitative measurements of diesel fuel spray characteristics in the near-nozzle region using X-ray absorption. Atomization Spray 11(4):471–49

    Methodology for Phase Doppler Anemometry Measurements on a Multi-Hole Diesel Injector

    Full text link
    [EN] In this paper, a methodology for Phase Doppler Anemometry (PDPA) measurements on a multi-hole diesel injector is developed. Several key considerations were taken into account in this methodology: The windows for PDPA optical access must be clean, since fuel impregnated in these could preclude the droplets velocity acquisition. Some parts, including a device for spray isolation, were designed and manufactured to fulfill this goal. Taking into account that only one spray is measured, the isolation device captures all except three of the sprays (including the spray of interest). The two plumes accompanying the main spray were thought to conserve the actual air entrainment and thus the spray behavior. The spray of interest was aligned horizontally to ease the way that the PDPA measurements are carried out. The plume was lined up by means of the MIE-Scattering macroscopic optical technique. Images were acquired for several injection events and spray contours were detected and processed with a purpose-built Matlab tool. At each time step a spray axis inclination was estimated using the centroids from instantaneous contours. Also, preliminary droplet velocity measurements were made to check the effectiveness of the alignment and spray isolation strategies. Both geometrical characterization and spray alignment had very low measurement error. Radial velocity profiles show that PDPA measurements with this set-up configuration preserved the spray behavior.This research was performed in the frame of the project "Estudio de la interaccion chorro-pared en condiciones realistas de motor" reference TRA2015-67679-c2-1-R from Ministerio de Economia y Competitividad (Spanish Ministry of Economy). The equipment used in this work has been partially supported by FEDER Project funds "Dotacion de infraestructuras cientifico tectinas para el Centro Integral de Mejora Energetica y Medioambiental de Sistemas de Transporte (CiMeT), (FEDER-ICTS-2012-06)", framed in the operation program of unique scientific and technical infrastructure of the Ministry of Science and Innovation of Spain. Jhoan S. Giraldo was supported by a research grant from Generalitat Valenciana (Programa Santiago Grisolia, GRISOLIA/2013/007).Payri, R.; Gimeno, J.; Marti-Aldaravi, P.; Giraldo-Valderrama, JS. (2017). Methodology for Phase Doppler Anemometry Measurements on a Multi-Hole Diesel Injector. Experimental Techniques. 41(2):95-102. https://doi.org/10.1007/s40799-016-0154-1S95102412Lee J, Kang S, Rho B (2002) Intermittent atomization characteristics of multi-hole and single-hole diesel nozzle. KSME Int J 16(12):1693–1701Lee BH, Song JH, Chang YJ, Jeon CH (2010) Effect of the number of fuel injector holes on characteristics of combustion and emissions in a diesel engine. Int J Automot Technol 11(6):783– 791Lee J, Kaug S, Rho B (2003) Atomization characteristics of intermittent multi-hole diesel spray using time-resolved pdpa data. KSME Int J 17(5):766–775Zhou L-Y, Dong S-F, Cui H-F, Wu X-W, Xue F-Y, Luo F-Q (2016) Measurements and analyses on the transient discharge coefficient of each nozzle hole of multi-hole diesel injector. Sensors Actuators A Phys 244:198–205Payri R, Salvador FJ, Manin J, Viera A (2016) Diesel ignition delay and lift-off length through different methodologies using a multi-hole injector. Appl Energy 162:541–550Payri R, García-Oliver JM, Bardi M, Manin J (2012) Fuel temperature influence on diesel sprays in inert and reacting conditions. Appl Therm Eng 35:185–195Payri F, Payri R, Bardi M, Carreres M (2014) Engine combustion network: Influence of the gas properties on the spray penetration and spreading angle. Exp Thermal Fluid Sci 53:236– 243Payri R, Gimeno J, Bardi M, Plazas AH (2013) Study liquid length penetration results obtained with a direct acting piezo electric injector. Appl Energy 106(0):152–162Soare V (2007) Phase Doppler Measurements in Diesel Dense Sprays: Optimisation of Measurements and Study of the Orifice Geometry Influence over the Spray at Microscopic Level. PhD thesis, Universitat Politècnica de ValenciaAraneo L, Tropea C (2000) Improving phase doppler measurements in a diesel spray. SAE paperCoghe A, Cossali GE (2012) Quantitative optical techniques for dense sprays investigation: A survey. Optics and Lasers in Engineering 50(1):46–56. Advances in Flow VisualizationPayri R, Araneo L, Shakal J, Soare V (2008) Phase doppler measurements: system set-up optimization for characterization of a diesel nozzle. J Mech Sci Technol 22(8):1620–1632Desantes JM, Payri R, Salvador FJ, Soare V (2005) Phase doppler measurements: system set-up optimization for characterization of a diesel nozzle. In: SAE Technical Paper. SAE International, 04Bracco FV, Reitz RD (1979) On the dependence of spray angle and other spray parameters on nozzle design and operating conditions. SAE Technical PaperGavaises M, Andriotis A (2006) Cavitation inside multi-hole injectors for large diesel engines and its effect on the near-nozzle spray structure. In: SAE Technical Paper. SAE International, 04Macian V, Payri R, Garcia A, Bardi M (2012) Experimental evaluation of the best approach for diesel spray images segmentation. Exp Tech 36(6):26–34Payri R, Gimeno J, Viera JP, Plazas AH (2013) Needle lift profile influence on the vapor phase penetration for a prototype diesel direct acting piezoelectric injector. Fuel 113:257– 265Koo Ja-Ye Hung C, Martin JK (1997) Injection pressure effects upon droplet behaviour in transient diesel sprays. SAE PaperLee J, Kang S, Rho B (2003) Time-resolved analysis of turbulent mixing flow characteristics of intermittent multi-hole diesel spray using 2-d pdpa. JSME International Journal Series B Fluids and Thermal Engineering 46 (3):425–433Sinnamon J, Lancaster D, Stiener J (1980) An experimental and analytical study of engine fuel spray trajectories. SAE Technical PaperDesantes JM, Salvador FJ, López JJ, De la Morena J (2011) Study of mass and momentum transfer in diesel sprays based on x-ray mass distribution measurements and on a theoretical derivation. Exp Fluids 50 (2):233–246Hinze (1975) Turbulence. McGraw-Hill, New YorkSchlichting H (1979) Boundary Layer Theory. McGraw-Hill, New YorkDesantes JM, Payri R, Salvador FJ, Gil A (2006) Development and validation of a theoretical model for diesel spray penetration. Fuel 85:910–91

    Computational investigation of diesel nozzle internal flow during the complete injection event

    Full text link
    [EN] Currently, diesel engines are calibrated using more and more complex multiple injection strategies. Under these conditions, the characteristics of the flow exiting the fuel injector are strongly affected by the transient interaction between the needle, the sac volume and the orifices, which are not yet clear. In the current paper, a methodology combining a 1D injector model and 3D-CFD simulations is proposed. First, the characteristics of the nozzle flow have been experimentally assessed in transient conditions by means of injection rate and momentum flux measurements. Later, the 3D-CFD modeling approach has been validated at steady-state fixed lift conditions. Finally, a previously developed 1D injector model has been used to extract the needle lift profiles and transient pressure boundary conditions used for the full-transient 3D-CFD simulations, using adaptive mesh refinement (AMR) strategies to be able to simulate the complete injection rate starting from 1 mu m lift.This work was partly sponsored by "Ministerio de Economia y Competitividad'', of the Spanish Government, in the frame of the Project "Estudio de la interaccion chorro-pared en condiciones realistas de motor'', Reference TRA2015-67679-c2-1-R. The authors would like also to thank the computer resources, technical expertise and assistance provided by Universidad de Valencia in the use of the supercomputer "Tirant''. Mr. Jaramillo's Thesis is funded by "Conselleria d'Educacio, Cultura i Esports'' of Generalitat Valenciana in the frame of the program "Programa VALI + D para investigadores en formacion, Reference ACIF/2015/040.Salvador, FJ.; De La Morena, J.; Bracho Leon, G.; Jaramillo-Císcar, D. (2018). Computational investigation of diesel nozzle internal flow during the complete injection event. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 40(3):153-167. https://doi.org/10.1007/s40430-018-1074-zS153167403Hall CAS, Lambert JG, Balogh SB (2014) EROI of different fuels and the implications for society. Energy Policy 64:141–152. https://doi.org/10.1016/j.enpol.2013.05.049Lujan JM, Tormos B, Salvador FJ, Gargar K (2009) Comparative analysis of a DI diesel engine fuelled with biodiesel blends during the European MVEG-A cycle: preliminary study (I). Biomass Bioenergy 33:941–947. https://doi.org/10.1016/j.biombioe.2009.02.004Pickett LM, Siebers DL (2004) Soot in diesel fuel jets: effects of ambient temperature, ambient density, and injection pressure. Combust Flame 138:114–135. https://doi.org/10.1016/j.combustflame.2004.04.006Dec JE (1997) A Conceptual Model of DI Diesel Combustion Based on Laser-Sheet Imaging. SAE Tech. Pap. 970873Wang X, Huang Z, Zhang W et al (2011) Effects of ultra-high injection pressure and micro-hole nozzle on flame structure and soot formation of impinging diesel spray. Appl Energy 88:1620–1628. https://doi.org/10.1016/j.apenergy.2010.11.035Sayin C, Gumus M, Canakci M (2013) Influence of injector hole number on the performance and emissions of a di diesel engine fueled with biodiesel-diesel fuel blends. Appl Therm Eng 61:121–128. https://doi.org/10.1016/j.applthermaleng.2013.07.038Mohan B, Yang W, Chou SK (2013) Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—A review. Renew Sustain Energy Rev 28:664–676. https://doi.org/10.1016/j.rser.2013.08.051Payri R, Salvador FJ, Gimeno J, De la Morena J (2011) Influence of injector technology on injection and combustion development, Part 1: hydraulic characterization. Appl Energy 88:1068–1074. https://doi.org/10.1016/j.apenergy.2010.10.012Park SW, Kim JW, Lee CS (2006) Effect of injector type on fuel-air mixture formation of high-speed diesel sprays. Proc Inst Mech Eng D 220:647–659. https://doi.org/10.1243/09544070D20304Moon S, Komada K, Sato K et al (2015) Ultrafast X-ray study of multi-hole GDI injector sprays: effects of nozzle hole length and number on initial spray formation. Exp Therm Fluid Sci 68:68–81. https://doi.org/10.1016/j.expthermflusci.2015.03.027Powell CF, Kastengren AL, Liu Z, Fezzaa K (2010) The effects of diesel injector needle motion on spray structure. J Eng Gas Turbines Power 133:12802. https://doi.org/10.1115/1.4001073Huang W, Moon S, Ohsawa K (2016) Near-nozzle dynamics of diesel spray under varied needle lifts and its prediction using analytical model. Fuel 180:292–300. https://doi.org/10.1016/j.fuel.2016.04.042Sun Z-Y, Li G-X, Chen C et al (2015) Numerical investigation on effects of nozzle’s geometric parameters on the flow and the cavitation characteristics within injector’s nozzle for a high-pressure common-rail DI diesel engine. Energy Convers Manag 89:843–861. https://doi.org/10.1016/j.enconman.2014.10.047Devassy BM, Habchi C, Daniel E (2015) Atomization modelling of liquid jets using a two-surface density approach. At Sprays 25:47–80Moon S, Gao Y, Park S et al (2015) Effect of the number and position of nozzle holes on in- and near-nozzle dynamic characteristics of diesel injection. Fuel 150:112–122. https://doi.org/10.1016/j.fuel.2015.01.097Payri R, Salvador FJ, Carreres M, De la Morena J (2016) Fuel temperature influence on the performance of a last generation common-rail diesel ballistic injector. Part II: 1D model development, validation and analysis. Energy Convers Manag 114:376–391. https://doi.org/10.1016/j.enconman.2016.02.043Plamondon E, Seers P (2014) Development of a simplified dynamic model for a piezoelectric injector using multiple injection strategies with biodiesel/diesel-fuel blends. Appl Energy 131:411–424. https://doi.org/10.1016/j.apenergy.2014.06.039Postrioti L, Malaguti S, Bosi M et al (2014) Experimental and numerical characterization of a direct solenoid actuation injector for diesel engine applications. Fuel 118:316–328. https://doi.org/10.1016/j.fuel.2013.11.001Desantes JM, Salvador FJ, Lopez JJ, De la Morena J (2011) Study of mass and momentum transfer in diesel sprays based on X-ray mass distribution measurements and on a theoretical derivation. Exp Fluids 50:233–246. https://doi.org/10.1007/s00348-010-0919-8De la Morena J, Neroorkar K, Plazas AH et al (2013) Numerical analysis of the influence of diesel nozzle design on internal flow characteristics for 2-valve diesel engine application. At Sprays 23:97–118. https://doi.org/10.1615/AtomizSpr.2013006361Duke DJ, Schmidt DP, Neroorkar K et al (2013) High-resolution large eddy simulations of cavitating gasoline-ethanol blends. Int J Engine Res 14:578–589. https://doi.org/10.1177/1468087413501824Mitroglou N, McLorn M, Gavaises M et al (2014) Instantaneous and ensemble average cavitation structures in diesel micro-channel flow orifices. Fuel 116:736–742. https://doi.org/10.1016/j.fuel.2013.08.060Wang X, Li K, Su W (2012) Experimental and numerical investigations on internal flow characteristics of diesel nozzle under real fuel injection conditions. Exp Therm Fluid Sci 42:204–211. https://doi.org/10.1016/j.expthermflusci.2012.04.022Sou A, Pratama RH (2016) Effects of asymmetric inflow on cavitation in fuel injector and discharged liquid jet. At Sprays 26:939–959. https://doi.org/10.1615/AtomizSpr.2015013501Xue Q, Battistoni M, Powell CF et al (2015) An Eulerian CFD model and X-ray radiography for coupled nozzle flow and spray in internal combustion engines. Int J Multiph Flow 70:77–88. https://doi.org/10.1016/j.ijmultiphaseflow.2014.11.012Castilla R, Gamez-Montero PJ, Ertrk N et al (2010) Numerical simulation of turbulent flow in the suction chamber of a gearpump using deforming mesh and mesh replacement. Int J Mech Sci 52:1334–1342. https://doi.org/10.1016/j.ijmecsci.2010.06.009Parlak Z, Engin T (2012) Time-dependent CFD and quasi-static analysis of magnetorheological fluid dampers with experimental validation. Int J Mech Sci 64:22–31. https://doi.org/10.1016/j.ijmecsci.2012.08.006Chiatti G, Chiavola O, Palmieri F (2009) Spray modeling for diesel engine performance analysis. SAE Tech Pap 2009-01-0835. https://doi.org/10.4271/2009-01-0835Marcer R, Audiffren C, Viel A, et al (2010) Coupling 1D system AMESim and 3D CFD EOLE models for diesel injection simulation Renault. In: ILASS—Eur. 2010, 23rd Annu. Conf. Liq. At. Spray Syst., pp 1–10Desantes JM, Salvador FJ, Carreres M, Martínez-López J (2014) Large-eddy simulation analysis of the influence of the needle lift on the cavitation in diesel injector nozzles. Proc Inst Mech Eng D 229:407–423. https://doi.org/10.1177/0954407014542627Battistoni M, Xue Q, Som S (2016) Large-eddy simulation (LES) of spray transients: start and end of injection phenomena. Oil Gas Sci Technol 71:24. https://doi.org/10.2516/ogst/2015024CONVERGE is a trade mark of convergent science. https://convergecfd.comMacian V, Bermúdez V, Payri R, Gimeno J (2003) New technique for determination of internal geometry of a diesel nozzle with the use of silicone methodology. Exp Tech 27:39–43. https://doi.org/10.1111/j.1747-1567.2003.tb00107.xDabiri S, Sirignano WA, Joseph DD (2007) Cavitation in an orifice flow. Phys Fluids 19:72112. https://doi.org/10.1063/1.2750655Mohan B, Yang W, Chou SK (2014) Cavitation in injector nozzle holes—a parametric study. Eng Appl Comput Fluid Mech 8:70–81Salvador FJ, Hoyas S, Novella R, Martinez-Lopez J (2011) Numerical simulation and extended validation of two-phase compressible flow in diesel injector nozzles. Proc Inst Mech Eng D 225:545–563. https://doi.org/10.1177/09544070JAUTO1569Som S, Longman DE, Ramirez AI, Aggarwal S (2012) Influence of nozzle orifice geometry and fuel properties on flow and cavitation characteristics of a diesel injector. In: Fuel Inject. Automot. Eng., pp 112–126Desantes JM, Salvador FJ, Carreres M, Jaramillo D (2015) Experimental characterization of the thermodynamic properties of diesel fuels over a wide range of pressures and temperatures. SAE Int J Fuels Lubr 8:2015-01-0951. https://doi.org/10.4271/2015-01-0951Bosch W (1966) The fuel rate indicator: a new measuring instrument for display of the characteristics of individual injection. SAE Pap. 660749Payri R, Salvador FJ, Gimeno J, Bracho G (2008) A new methodology for correcting the signal cumulative phenomenon on injection rate measurements. Exp Tech 32:46–49. https://doi.org/10.1111/j.1747-1567.2007.00188.xPayri F, Payri R, Salvador FJ, Martínez-López J (2011) A contribution to the understanding of cavitation effects in diesel injector nozzles through a combined experimental and computational investigation. Comput Fluids 58:88–101. https://doi.org/10.1016/j.compfluid.2012.01.005Lichtarowicz AK, Duggins RK, Markland E (1965) Discharge coefficients for incompressible non-cavitating flow through long orifices. J Mech Eng Sci 7:210–219. https://doi.org/10.1243/JMES_JOUR_1965_007_029_02Lopez JJ, Salvador FJ, De la Garza OA, Arrègle J (2012) Characterization of the pressure losses in a common rail diesel injector. Proc Inst Mech Eng D 226:1697–1706. https://doi.org/10.1177/0954407012447020Salvador FJ, Carreres M, Jaramillo D, Martínez-López J (2015) Comparison of microsac and VCO diesel injector nozzles in terms of internal nozzle flow characteristics. Energy Convers Manag 103:284–299. https://doi.org/10.1016/j.enconman.2015.05.062LMS (2010) Imagine.Lab AMESim v.10. User’s manualPayri R, Salvador FJ, Martí-Aldaraví P, Martínez-López J (2012) Using one-dimensional modeling to analyze the influence of the use of biodiesels on the dynamic behavior of solenoid-operated injectors in common rail systems: detailed injection system model. Energy Convers Manag 54:90–99. https://doi.org/10.1016/j.enconman.2011.10.00

    A Challenging Future for the IC Engine: New Technologies and the Control Role

    Full text link
    [FR] Un challenge pour le futur du moteur a` combustion interne : nouvelles technologies et ro¿le du contro¿le moteur ¿ Les nouvelles normes sur les e¿missions, en particulier le CO2, pourraient re¿duire l¿utilisation du moteur a` combustion interne pour les ve¿hicules. Cet article pre¿sente une revue de diffe¿rentes technologies en cours de de¿veloppement afin de respecter ces normes, depuis de nouveaux concepts de combustion jusqu¿a` des syste`mes avance¿s de suralimentation ou de post-traitement. La plupart de ces technologies demande un contro¿le pre¿cis des conditions de fonctionnement et impose souvent de fortes contraintes lors de l¿inte¿gration des syste`mes. Dans ce contexte et en profitant des dernie`res avance¿es dans les mode`les, les me¿thodes et les capteurs, le contro¿le moteur jouera un ro¿le clef dans la mise en œuvre et le de¿veloppement de la prochaine ge¿ne¿ration de moteurs. De l¿avis des auteurs, le moteur a` combustion interne restera la technologie dominante pour les ve¿hicules des prochaines de¿cennies.[EN] New regulations on pollutants and, specially, on CO2 emissions could restrict the use of the internal combustion engine in automotive applications. This paper presents a review of different technologies under development for meeting such regulations, ranging from new combustion concepts to advanced boosting methods and after-treatment systems. Many of them need an accurate control of the operating conditions and, in many cases, they impose demanding requirements at a system integration level. In this framework, engine control disciplines will be key for the implementation and development of the next generation engines, taking profit of recent advancements in models, methods and sensors. According to authors¿ opinion, the internal combustion engine will still be the dominant technology in automotive applications for the next decades.F. Payri; Luján, JM.; Guardiola, C.; Pla Moreno, B. (2015). A Challenging Future for the IC Engine: New Technologies and the Control Role. Oil & Gas Science and Technology ¿ Revue d¿IFP Energies nouvelles. 70(1):15-30. doi:10.2516/ogst/2014002S153070

    Capturing PM2.5 emissions from 3D printing via nanofiber-based air filter

    Get PDF
    This study investigated the feasibility of using polycaprolactone (PCL) nanofiber-based air filters to capture PM2.5 particles emitted from fused deposition modeling (FDM) 3D printing. Generation and aggregation of emitted particles were investigated under different testing environments. The results show that: (1) the PCL nanofiber membranes are capable of capturing particle emissions from 3D printing, (2) relative humidity plays a signification role in aggregation of the captured particles, (3) generation and aggregation of particles from 3D printing can be divided into four stages: the PM2.5 concentration and particles size increase slowly (first stage), small particles are continuously generated and their concentration increases rapidly (second stage), small particles aggregate into more large particles and the growth of concentration slows down (third stage), the PM2.5 concentration and particle aggregation sizes increase rapidly (fourth stage), and (4) the ultrafine particles denoted as 鈥渂uilding unit鈥 act as the fundamentals of the aggregated particles. This work has tremendous implications in providing measures for controlling the particle emissions from 3D printing, which would facilitate the extensive application of 3D printing. In addition, this study provides a potential application scenario for nanofiber-based air filters other than laboratory theoretical investigation

    Understanding the diesel-like spray characteristics applying a flamelet-based combustion model and detailed large eddy simulations

    Full text link
    This is the author's version of a work that was accepted for publication in International Journal of Engine Research. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published as https://doi.org/10.1177/1468087419864469.[EN] This investigation analyses the structure of spray A from engine combustion network (ECN), which is representative of diesel-like sprays, by means of large eddy simulations and an unsteady flamelet progress variable combustion model. A very good agreement between modelled and experimental measurements is obtained for the inert spray that supports further analysis. A parametric variation in oxygen concentration is carried out in order to describe the structure of the flame and how it is modified when mixture reactivity is changed. The most relevant trends for the flame metrics, ignition delay and lift-off length are well-captured by the simulations corroborating the suitability of the model for this type of configuration. Results show that the morphology of the flame is strongly affected by the boundary conditions in terms of the reactive scalar spatial fields and Z-T maps. The filtered instantaneous fields provided by the simulations allow investigation of the structure of the flame at the lift-off length, whose positioning shows low fluctuations, and how it is affected by turbulence. It is evidenced that small ignition kernels appear upstream and detached from the flame that eventually merge with its base in agreement with experimental observations, leading to state that auto-ignition plays a key role as one of the flame stabilization mechanisms of the flame.The author(s) disclosed receipt of the following financial support for the research, authorship and/or publication of this article: The authors acknowledge that this work was possible thanks to the Ayuda para la Formacion de Profesorado Universitario (FPU 14/03278) funded by the Subprogramas de Formacion y de Movilidad del Ministerio de Educacion, Cultura y Deporte from Spain. Also, this study was partially funded by the Ministerio de Economia y Competitividad from Spain in the frame of the CHEST (TRA2017-89139-C2-1-R) national project.Pérez-Sánchez, EJ.; García-Oliver, JM.; Novella Rosa, R.; Pastor Enguídanos, JM. (2020). Understanding the diesel-like spray characteristics applying a flamelet-based combustion model and detailed large eddy simulations. International Journal of Engine Research. 21(1):134-150. https://doi.org/10.1177/1468087419864469S134150211Maes, N., Meijer, M., Dam, N., Somers, B., Baya Toda, H., Bruneaux, G., … Manin, J. (2016). Characterization of Spray A flame structure for parametric variations in ECN constant-volume vessels using chemiluminescence and laser-induced fluorescence. Combustion and Flame, 174, 138-151. doi:10.1016/j.combustflame.2016.09.005Bardi, M., Payri, R., Malbec, L. M., Bruneaux, G., Pickett, L. M., Manin, J., … Genzale, C. (2012). ENGINE COMBUSTION NETWORK: COMPARISON OF SPRAY DEVELOPMENT, VAPORIZATION, AND COMBUSTION IN DIFFERENT COMBUSTION VESSELS. Atomization and Sprays, 22(10), 807-842. doi:10.1615/atomizspr.2013005837Benajes, J., Payri, R., Bardi, M., & Martí-Aldaraví, P. (2013). Experimental characterization of diesel ignition and lift-off length using a single-hole ECN injector. Applied Thermal Engineering, 58(1-2), 554-563. doi:10.1016/j.applthermaleng.2013.04.044Payri, R., García-Oliver, J. M., Xuan, T., & Bardi, M. (2015). A study on diesel spray tip penetration and radial expansion under reacting conditions. Applied Thermal Engineering, 90, 619-629. doi:10.1016/j.applthermaleng.2015.07.042Naud, B., Novella, R., Pastor, J. M., & Winklinger, J. F. (2015). RANS modelling of a lifted H2/N2 flame using an unsteady flamelet progress variable approach with presumed PDF. Combustion and Flame, 162(4), 893-906. doi:10.1016/j.combustflame.2014.09.014Pei, Y., Hawkes, E. R., Kook, S., Goldin, G. M., & Lu, T. (2015). Modelling n-dodecane spray and combustion with the transported probability density function method. Combustion and Flame, 162(5), 2006-2019. doi:10.1016/j.combustflame.2014.12.019Desantes, J. M., García-Oliver, J. M., Novella, R., & Pérez-Sánchez, E. J. (2017). Application of an unsteady flamelet model in a RANS framework for spray A simulation. Applied Thermal Engineering, 117, 50-64. doi:10.1016/j.applthermaleng.2017.01.101Pomraning, E., & Rutland, C. J. (2002). Dynamic One-Equation Nonviscosity Large-Eddy Simulation Model. AIAA Journal, 40(4), 689-701. doi:10.2514/2.1701Bharadwaj, N., Rutland, C. J., & Chang, S. (2009). Large eddy simulation modelling of spray-induced turbulence effects. International Journal of Engine Research, 10(2), 97-119. doi:10.1243/14680874jer02309Pope, S. B. (2004). Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of Physics, 6, 35-35. doi:10.1088/1367-2630/6/1/035Pitsch, H. (2006). LARGE-EDDY SIMULATION OF TURBULENT COMBUSTION. Annual Review of Fluid Mechanics, 38(1), 453-482. doi:10.1146/annurev.fluid.38.050304.092133Maas, U., & Pope, S. B. (1992). Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space. Combustion and Flame, 88(3-4), 239-264. doi:10.1016/0010-2180(92)90034-mOIJEN, J. A. V., & GOEY, L. P. H. D. (2000). Modelling of Premixed Laminar Flames using Flamelet-Generated Manifolds. Combustion Science and Technology, 161(1), 113-137. doi:10.1080/00102200008935814Gicquel, O., Darabiha, N., & Thévenin, D. (2000). Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proceedings of the Combustion Institute, 28(2), 1901-1908. doi:10.1016/s0082-0784(00)80594-9PIERCE, C. D., & MOIN, P. (2004). Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. Journal of Fluid Mechanics, 504, 73-97. doi:10.1017/s0022112004008213Ihme, M., & Pitsch, H. (2008). Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model. Combustion and Flame, 155(1-2), 70-89. doi:10.1016/j.combustflame.2008.04.001Ihme, M., & Pitsch, H. (2008). Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model. Combustion and Flame, 155(1-2), 90-107. doi:10.1016/j.combustflame.2008.04.015Tillou, J., Michel, J.-B., Angelberger, C., Bekdemir, C., & Veynante, D. (2013). Large-Eddy Simulation of Diesel Spray Combustion with Exhaust Gas Recirculation. Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles, 69(1), 155-165. doi:10.2516/ogst/2013139Michel, J.-B., Colin, O., & Veynante, D. (2008). Modeling ignition and chemical structure of partially premixed turbulent flames using tabulated chemistry. Combustion and Flame, 152(1-2), 80-99. doi:10.1016/j.combustflame.2007.09.001Tillou, J., Michel, J.-B., Angelberger, C., & Veynante, D. (2014). Assessing LES models based on tabulated chemistry for the simulation of Diesel spray combustion. Combustion and Flame, 161(2), 525-540. doi:10.1016/j.combustflame.2013.09.006Michel, J.-B., & Colin, O. (2013). A tabulated diffusion flame model applied to diesel engine simulations. International Journal of Engine Research, 15(3), 346-369. doi:10.1177/1468087413488590Aubagnac-Karkar, D., Michel, J.-B., Colin, O., & Darabiha, N. (2017). Combustion and soot modelling of a high-pressure and high-temperature Dodecane spray. International Journal of Engine Research, 19(4), 434-448. doi:10.1177/1468087417714351Wehrfritz, A., Kaario, O., Vuorinen, V., & Somers, B. (2016). Large Eddy Simulation of n-dodecane spray flames using Flamelet Generated Manifolds. Combustion and Flame, 167, 113-131. doi:10.1016/j.combustflame.2016.02.019García-Oliver, J. M., Malbec, L.-M., Toda, H. B., & Bruneaux, G. (2017). A study on the interaction between local flow and flame structure for mixing-controlled Diesel sprays. Combustion and Flame, 179, 157-171. doi:10.1016/j.combustflame.2017.01.023Tagliante, F., Malbec, L.-M., Bruneaux, G., Pickett, L. M., & Angelberger, C. (2018). Experimental study of the stabilization mechanism of a lifted Diesel-type flame using combined optical diagnostics and laser-induced plasma ignition. Combustion and Flame, 197, 215-226. doi:10.1016/j.combustflame.2018.07.024Pandurangi, S. S., Bolla, M., Wright, Y. M., Boulouchos, K., Skeen, S. A., Manin, J., & Pickett, L. M. (2016). Onset and progression of soot in high-pressure n-dodecane sprays under diesel engine conditions. International Journal of Engine Research, 18(5-6), 436-452. doi:10.1177/1468087416661041Pastor, J. V., Garcia-Oliver, J. M., Pastor, J. M., & Vera-Tudela, W. (2015). ONE-DIMENSIONAL DIESEL SPRAY MODELING OF MULTICOMPONENT FUELS. Atomization and Sprays, 25(6), 485-517. doi:10.1615/atomizspr.2014010370Kastengren, A. L., Tilocco, F. Z., Powell, C. F., Manin, J., Pickett, L. M., Payri, R., & Bazyn, T. (2012). ENGINE COMBUSTION NETWORK (ECN): MEASUREMENTS OF NOZZLE GEOMETRY AND HYDRAULIC BEHAVIOR. Atomization and Sprays, 22(12), 1011-1052. doi:10.1615/atomizspr.2013006309Narayanaswamy, K., Pepiot, P., & Pitsch, H. (2014). A chemical mechanism for low to high temperature oxidation of n-dodecane as a component of transportation fuel surrogates. Combustion and Flame, 161(4), 866-884. doi:10.1016/j.combustflame.2013.10.012Frassoldati, A., D’Errico, G., Lucchini, T., Stagni, A., Cuoci, A., Faravelli, T., … Ranzi, E. (2015). Reduced kinetic mechanisms of diesel fuel surrogate for engine CFD simulations. Combustion and Flame, 162(10), 3991-4007. doi:10.1016/j.combustflame.2015.07.039Bharadwaj, N., & Rutland, C. J. (2010). A LARGE-EDDY SIMULATION STUDY OF SUB-GRID TWO-PHASE INTERACTION IN PARTICLE-LADEN FLOWS AND DIESEL ENGINE SPRAYS. Atomization and Sprays, 20(8), 673-695. doi:10.1615/atomizspr.v20.i8.20Reitz, R. D., & Beale, J. C. (1999). MODELING SPRAY ATOMIZATION WITH THE KELVIN-HELMHOLTZ/RAYLEIGH-TAYLOR HYBRID MODEL. Atomization and Sprays, 9(6), 623-650. doi:10.1615/atomizspr.v9.i6.40Pérez Sánchez, E. J. (s. f.). Application of a flamelet-based combustion model to diesel-like reacting sprays. doi:10.4995/thesis/10251/117316Peters, N. (1984). Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in Energy and Combustion Science, 10(3), 319-339. doi:10.1016/0360-1285(84)90114-xPeters, N. (2000). Turbulent Combustion. doi:10.1017/cbo9780511612701FIORINA, B., GICQUEL, O., VERVISCH, L., CARPENTIER, S., & DARABIHA, N. (2005). Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation. Combustion and Flame, 140(3), 147-160. doi:10.1016/j.combustflame.2004.11.002Payri, F., Novella, R., Pastor, J. M., & Pérez-Sánchez, E. J. (2017). Evaluation of the approximated diffusion flamelet concept using fuels with different chemical complexity. Applied Mathematical Modelling, 49, 354-374. doi:10.1016/j.apm.2017.04.024Pera, C., Colin, O., & Jay, S. (2009). Development of a FPI Detailed Chemistry Tabulation Methodology for Internal Combustion Engines. Oil & Gas Science and Technology - Revue de l’IFP, 64(3), 243-258. doi:10.2516/ogst/2009002Mastorakos, E. (2009). Ignition of turbulent non-premixed flames. Progress in Energy and Combustion Science, 35(1), 57-97. doi:10.1016/j.pecs.2008.07.002Pickett, L. M., Manin, J., Genzale, C. L., Siebers, D. L., Musculus, M. P. B., & Idicheria, C. A. (2011). Relationship Between Diesel Fuel Spray Vapor Penetration/Dispersion and Local Fuel Mixture Fraction. SAE International Journal of Engines, 4(1), 764-799. doi:10.4271/2011-01-0686Olbricht, C., Ketelheun, A., Hahn, F., & Janicka, J. (2010). Assessing the Predictive Capabilities of Combustion LES as Applied to the Sydney Flame Series. Flow, Turbulence and Combustion, 85(3-4), 513-547. doi:10.1007/s10494-010-9300-5Novella, R., García, A., Pastor, J. M., & Domenech, V. (2011). The role of detailed chemical kinetics on CFD diesel spray ignition and combustion modelling. Mathematical and Computer Modelling, 54(7-8), 1706-1719. doi:10.1016/j.mcm.2010.12.048Bhattacharjee, S., & Haworth, D. C. (2013). Simulations of transient n-heptane and n-dodecane spray flames under engine-relevant conditions using a transported PDF method. Combustion and Flame, 160(10), 2083-2102. doi:10.1016/j.combustflame.2013.05.003Tagliante, F., Poinsot, T., Pickett, L. M., Pepiot, P., Malbec, L.-M., Bruneaux, G., & Angelberger, C. (2019). A conceptual model of the flame stabilization mechanisms for a lifted Diesel-type flame based on direct numerical simulation and experiments. Combustion and Flame, 201, 65-77. doi:10.1016/j.combustflame.2018.12.007Duwig, C., & Fuchs, L. (2008). Large Eddy Simulation of a H2/N2Lifted Flame in a Vitiated Co-Flow. Combustion Science and Technology, 180(3), 453-480. doi:10.1080/00102200701741327Gong, C., Jangi, M., & Bai, X.-S. (2014). Large eddy simulation of n-Dodecane spray combustion in a high pressure combustion vessel. Applied Energy, 136, 373-381. doi:10.1016/j.apenergy.2014.09.030Pei, Y., Som, S., Pomraning, E., Senecal, P. K., Skeen, S. A., Manin, J., & Pickett, L. M. (2015). Large eddy simulation of a reacting spray flame with multiple realizations under compression ignition engine conditions. Combustion and Flame, 162(12), 4442-4455. doi:10.1016/j.combustflame.2015.08.010Kahila, H., Wehrfritz, A., Kaario, O., Ghaderi Masouleh, M., Maes, N., Somers, B., & Vuorinen, V. (2018). Large-eddy simulation on the influence of injection pressure in reacting Spray A. Combustion and Flame, 191, 142-159. doi:10.1016/j.combustflame.2018.01.00

    Genotypes of NK cell KIR Receptors, Their Ligands, and Fc? Receptors in the Response of Neuroblastoma Patients to Hu14.18-IL2 Immunotherapy

    No full text
    PMID: 20935224Response to immunocytokine (IC) therapy is dependent on natural killer cells in murine neuroblastoma (NBL) models. Furthermore, killer immunoglobulin-like receptor (KIR)/KIR-ligand mismatch is associated with improved outcome to autologous stem cell transplant for NBL. Additionally, clinical antitumor response to monoclonal antibodies has been associated with specific polymorphic-Fc?R alleles. Relapsed/refractory NBL patients received the hu14.18-IL2 IC (humanized anti-GD2 monoclonal antibody linked to human IL2) in a Children's Oncology Group phase II trial. In this report, these patients were genotyped for KIR, HLA, and FcR alleles to determine whether KIR receptor-ligand mismatch or specific Fc?R alleles were associated with antitumor response. DNA samples were available for 38 of 39 patients enrolled: 24 were found to have autologous KIR/KIR-ligand mismatch; 14 were matched. Of the 24 mismatched patients, 7 experienced either complete response or improvement of their disease after IC therapy. There was no response or comparable improvement of disease in patients who were matched. Thus KIR/KIR-ligand mismatch was associated with response/improvement to IC (P = 0.03). There was a trend toward patients with the Fc?R2A 131-H/H genotype showing a higher response rate than other Fc?R2A genotypes (P = 0.06). These analyses indicate that response or improvement of relapsed/refractory NBL patients after IC treatment is associated with autologous KIR/KIR-ligand mismatch, consistent with a role for natural killer cells in this clinical response

    Intertextuality in Ian McEwan's Sweet Tooth

    No full text
    La Tesis Doctoral estudia la observaci'on en tiempo real de la concentraci'on en el colector de escape de 'oxidos de nitr'ogeno (NOx) y del dosado en motores diesel sobrealimentados (¿ '1 ). Para ello se combinan dos fuentes de informaci'on diferentes: ¿ Sensores capaces de proporcionar una media de dichas variables, ¿ y modelos orientados a control que estiman estas variables a partir de otras medidas del motor. El trabajo parte de la evaluaci'on de la precisi'on de los sensores, realizada mediante la comparaci'on de su medida con la proporcionada por equipos anal'¿ticos de alta precisi'on, que son usados como est'andares de calibraci'on est'atica. Tambi'en se desarrollan en la Tesis m'etodos para la calibraci'on de la din'amica del sensor; dichos m'etodos permiten identi¿car un modelo de comportamiento del sensor y revelar su velocidad de respuesta. En general, estos sensores demuestran ser precisos pero relativamente lentos. Por otra parte, se proponen modelos r'apidos para la estimaci'on de NOx y ¿ '1 . Estos m'etodos, basados en relaciones f'¿sicas, tablas de par'ametros y una serie de correcciones, emplean las medidas proporcionadas por otros sensores con el ¿n de proporcionar una estimaci'on de las variables de inter'es. Los modelos permiten una estimaci'on muy r'apida, pero resultan afectados por efectos de deriva que comprometen su precisi'on. Con el ¿n de aprovechar las caracter'¿sticas din'amicas del modelo y mantener la precisi'on en estado estacionario del sensor, se proponen t'ecnicas de fusi'on de la informaci'on basadas en la aplicaci'on de ¿ltros de Kalman (KF). En primer lugar, se dise¿na un KF capaz de combinar ambas fuentes de informaci'on y corregir en tiempo real el sesgo entre las dos se¿nales. Posteriormente, se estudia la adaptaci'on en tiempo real de los par'ametros del modelo con el ¿n de corregir de forma autom'atica los problemas de deriva asociados al uso de modelos. Todos los m'etodos y procedimientos desarrollados a lo largo de la presente Tesis Doctoral se han aplicado de forma experimental a la estimaci'on de NOx y ¿ '1 . De forma adicional, la Tesis Doctoral desarrolla aspectos relativos a la transferencia de estos m'etodos a los motores de serie.The dissertation covers the problem of the online estimation of diesel engine exhaust concentrations of NOx and '1. Two information sources are utilised: ¿ on-board sensors for measuring NOx and '1, and ¿ control oriented models (COM) in order to predict NOx and '1. The evaluation of the static accuracy of these sensors is made by comparing the outputs with a gas analyser, while the dynamics are identified on-board by perform- ing step-like transitions on NOx and '1 after modifying ECU actuation variables. Different methods for identifying the dynamic output of the sensors are developed in this work; these methods allow to identify the time response and delay of the sensors if a sufficient data set is available. In general, these sensors are accurate but present slow responses. Afterwards, control oriented models for estimating NOx and '1 are proposed. Regarding '1 prediction, the computation is based on the relative fuel-to-air ratio, where fuel comes from an ECU model and air mass flow is measured by a sensor. For the case of NOx, a set-point relative model based on look-up tables is fitted for representing nominal engine emissions with an exponential correction based on the intake oxygen variation. Different corrections factor for modeling other effects such as the thermal loading of the engine are also proposed. The model is able to predict NOx fast with a low error and a simple structure. Despite of using models or sensors, model drift and sensor dynamic deficiencies affect the final estimation. In order to solve these problems, data fusion strategies are proposed by combining the steady-state accuracy of the sensor and the fast estimation of the models by means of applying Kalman filters (KF). In a first approach, a drift correction model tracks the bias between the model and the sensor but keeping the fast response of the model. In a second approach, the updating of look-up tables by using observers is coped with different versions based on the extended Kalman filter (EKF). Particularly, a simplified KF allows to observe the parameters with a low computational effort. Finally, the methods and algorithms developed in this work are combined and applied to the estimation of NOx and '1. Additionally, the dissertation covers aspects relative to the implementation of the methods in series engines.Blanco Rodríguez, D. (2013). Modelling and observation of exhaust gas concentrations for diesel engine control [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/32666TESISPremiad
    corecore