541 research outputs found

    A Markov Chain Monte Carlo technique to sample transport and source parameters of Galactic cosmic rays: II. Results for the diffusion model combining B/C and radioactive nuclei

    Full text link
    On-going measurements of the cosmic radiation (nuclear, electronic, and gamma-ray) are shedding new light on cosmic-ray physics. A comprehensive picture of these data relies on an accurate determination of the transport and source parameters of propagation models. A Markov Chain Monte Carlo is used to obtain these parameters in a diffusion model. From the measurement of the B/C ratio and radioactive cosmic-ray clocks, we calculate their probability density functions, with a special emphasis on the halo size L of the Galaxy and the local underdense bubble of size r_h. The analysis relies on the USINE code for propagation and on a Markov Chain Monte Carlo technique (Putze et al. 2009, paper I of this series) for the parameter determination. As found in previous studies, the B/C best-fit model favours diffusion/convection/reacceleration (Model III) over diffusion/reacceleration (Model II). A combined fit on B/C and the isotopic ratios (10Be/9Be, 26Al/27Al, 36Cl/Cl) leads to L ~ 8 kpc and r_h ~ 120 pc for the best-fit Model III. This value for r_h is consistent with direct measurements of the local interstallar medium. For Model II, L ~ 4 kpc and r_h is consistent with zero. We showed the potential and usefulness of the Markov Chain Monte Carlo technique in the analysis of cosmic-ray measurements in diffusion models. The size of the diffusive halo depends crucially on the value of the diffusion slope delta, and also on the presence/absence of the local underdensity damping effect on radioactive nuclei. More precise data from on-going experiments are expected to clarify this issue.Comment: 20 pages, 14 figures, minor language corrections to match the A&A accepted versio

    Nuclear Cosmic Rays propagation in the Atmosphere

    Full text link
    The transport of the nuclear cosmic ray flux in the atmosphere is studied and the atmospheric corrections to be applied to the measurements are calculated. The contribution of the calculated corrections to the accuracy of the experimental results are discussed and evaluated over the kinetic energy range 10-103^{3} GeV/n. The Boron (B) and Carbon (C) elements system is used as a test case. It is shown that the required corrections become largely dominant at the highest energies investigated. The results are discussed.Comment: Proc. of 30th International Cosmic Ray Conference, Merida, Mexico; 4 page

    Neutron monitors and muon detectors for solar modulation studies: Interstellar flux, yield function, and assessment of critical parameters in count rate calculations

    Full text link
    Particles count rates at given Earth location and altitude result from the convolution of (i) the interstellar (IS) cosmic-ray fluxes outside the solar cavity, (ii) the time-dependent modulation of IS into Top-of-Atmosphere (TOA) fluxes, (iii) the rigidity cut-off (or geomagnetic transmission function) and grammage at the counter location, (iv) the atmosphere response to incoming TOA cosmic rays (shower development), and (v) the counter response to the various particles/energies in the shower. Count rates from neutron monitors or muon counters are therefore a proxy to solar activity. In this paper, we review all ingredients, discuss how their uncertainties impact count rate calculations, and how they translate into variation/uncertainties on the level of solar modulation φ\varphi (in the simple Force-Field approximation). The main uncertainty for neutron monitors is related to the yield function. However, many other effects have a significant impact, at the 5-10\% level on φ\varphi values. We find no clear ranking of the dominant effects, as some depend on the station position and/or the weather and/or the season. An abacus to translate any variation of count rates (for neutron and μ\mu detectors) to a variation of the solar modulation φ\varphi is provided.Comment: 28 pages, 16 figures, 9 tables, match accepted version in AdSR (minor corrections, Dorman (1974,2004,2009) reference textbooks added

    Neutron monitors and muon detectors for solar modulation studies: 2. ϕ\phi time series

    Full text link
    The level of solar modulation at different times (related to the solar activity) is a central question of solar and galactic cosmic-ray physics. In the first paper of this series, we have established a correspondence between the uncertainties on ground-based detectors count rates and the parameter ϕ\phi (modulation level in the force-field approximation) reconstructed from these count rates. In this second paper, we detail a procedure to obtain a reference ϕ\phi time series from neutron monitor data. We show that we can have an unbiased and accurate ϕ\phi reconstruction (Δϕ/ϕ10%\Delta\phi/\phi\simeq 10\%). We also discuss the potential of Bonner spheres spectrometers and muon detectors to provide ϕ\phi time series. Two by-products of this calculation are updated ϕ\phi values for the cosmic-ray database and a web interface to retrieve and plot ϕ\phi from the 50's to today (\url{http://lpsc.in2p3.fr/crdb}).Comment: 15 pages, 5 figures, 2 tables. AdSR, in press. Web interface to get modulation parameter phi(t): new tab in http://lpsc.in2p3.fr/crd

    Hysteresis in modeling of poroelastic systems: quasistatic equilibrium

    Get PDF

    Transport parameters from AMS-02 F/Si data and fluorine source abundance

    Full text link
    The AMS-02 collaboration recently released cosmic-ray F/Si data of unprecedented accuracy. CR F is predominantly produced by fragmentation of heavier progenitors, while Si is mostly accelerated at source. This ratio is thus maximally sensitive to CR propagation. We study the compatibility of the transport parameters derived from the F/Si ratio with those obtained from the lighter Li/C, Be/C, and B/C ratios. We also inspect the CR source abundance of F, one of the few elements with a high first ionisation potential but only moderately volatile, and a potentially key element to study the acceleration mechanism of CRs. We use the 1D diffusion model implemented in the USINE code and perform χ2\chi^2 analyses accounting for several systematic effects (energy correlations in data, nuclear cross sections and solar modulation uncertainties). We also take advantage of the EXFOR nuclear database to update the F production cross sections for its most important progenitors (identified to be 56Fe, 32S, 28Si, 27Al, 24Mg, 22Ne, and 20Ne). The transport parameters obtained from AMS-02 F/Si data are compatible with those obtained from AMS-02 (Li,Be,B)/C data. The combined fit of all these ratios leads to a χ2/dof1.1\chi^2/dof\approx1.1, with 10%\lesssim 10\% adjustments of the B and F production cross sections (the latter are based on very few nuclear data points, and would strongly benefit from new measurements). The F/Si ratio is compatible with a pure secondary origin of F, with a best-fit relative source abundance 19F/28SiCRS103_{CRS}\sim 10^{-3} and an upper limit of 5×103\sim 5\times 10^{-3}. Unfortunately, this limit is not sufficient to test global acceleration models of CR nuclei, for which values at the level of 104\sim 10^{-4} are required. Such levels could be attained with F/Si data of a few percent accuracy at a few tens of TV, possibly within reach of the next generation of CR experiments.Comment: 15 pages, 13 figures, 3 table (1 appendix). Submitted to A&

    Atmospheric neutrino flux from 3-dimensional simulation

    Full text link
    The atmospheric muon and neutrino flux have been simulated using the same approach which successfully accounted for the recent secondary proton, electron and positron flux measurements in orbit by the AMS experiment. For the muon flux, a good agreement is obtained with the CAPRICE and HEAT data for altitudes ranging from sea level up to about 38 km. The general features of the calculated atmospheric neutrino flux are reported and discussed. The flux obtained at the Super-Kamiokande experiment location are reported and compared with other calculations. For low neutrino energies the flux obtained is significantly smaller than that used in the data analysis of underground experiment. The simulation results for the SOUDAN experiment site are also reported.Comment: 33 pages, 27 figures, 12 tables, final version for Phys. Rev.

    Design and construction of a Cherenkov imager for charge measurement of nuclear cosmic rays

    Full text link
    A proximity focusing Cherenkov imager called CHERCAM, has been built for the charge measurement of nuclear cosmic rays with the CREAM instrument. It consists of a silica aerogel radiator plane across from a detector plane equipped with 1,600 1" diameter photomultipliers. The two planes are separated by a ring expansion gap. The Cherenkov light yield is proportional to the charge squared of the incident particle. The expected relative light collection accuracy is in the few percents range. It leads to an expected single element separation over the range of nuclear charge Z of main interest 1 < Z < 26. CHERCAM is designed to fly with the CREAM balloon experiment. The design of the instrument and the implemented technical solutions allowing its safe operation in high altitude conditions (radiations, low pressure, cold) are presented.Comment: 24 pages, 19 figure

    AMS-02 antiprotons and dark matter: Trimmed hints and robust bounds

    Full text link
    Based on 4 yr AMS-02 antiproton data, we present bounds on the dark matter (DM) annihilation cross section vs. mass for some representative final state channels. We use recent cosmic-ray propagation models, a realistic treatment of experimental and theoretical errors, and an updated calculation of input antiproton spectra based on a recent release of the PYTHIA code. We find that reported hints of a DM signal are statistically insignificant; an adequate treatment of errors is crucial for credible conclusions. Antiproton bounds on DM annihilation are among the most stringent ones, probing thermal DM up to the TeV scale. The dependence of the bounds upon propagation models and the DM halo profile is also quantified. A preliminary estimate reaches similar conclusions when applied to the 7 years AMS-02 dataset, but also suggests extra caution as for possible future claims of DM excesses.Comment: v2: 33 pages, 6 figures (two of which in two panels); clarifications and a couple of references added, conclusions unchange

    The rigidity dependence of galactic cosmic-ray fluxes and its connection with the diffusion coefficient

    Get PDF
    Thanks to tremendous experimental efforts, galactic cosmic-ray fluxes are being measured up to the unprecedented per cent precision level. The logarithmic slope of these fluxes is a crucial quantity that promises us information on the diffusion properties and the primary or secondary nature of the different species. However, these measured slopes are sometimes interpreted in the pure diffusive regime, guiding to misleading conclusions. In this paper, we have studied the propagation of galactic cosmic rays by computing the fluxes of species between H and Fe using the USINE code and considering all the relevant physical processes and an updated set of cross-section data. We show that the slope of the well-studied secondary-to-primary B/C ratio is distinctly different from the diffusion coefficient slope, by an offset of about 0.2 in the rigidity range in which the AMS-02 data reach their best precision (several tens of GV). Furthermore, we have demonstrated that none of the species from H to Fe follows the expectations of the pure-diffusive regime. We argue that these differences arise from propagation processes such as fragmentation, convection, and reacceleration, which cannot be neglected. On this basis, we also provide predictions for the spectral slope of elemental fluxes not yet analysed by the AMS collaboration
    corecore