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The behavior of hysteretic, coupled elastic and fluid systems is modeled. The emphasis is on quasistatic 
equilibrium in response to prescribed chemical potential (μ) protocols and prescribed stress (σ ) protocols. 
Hysteresis arises in these models either from the presence of hysterons or from the presence of self-trapping 
internal fields. This latter mechanism is modeled in finite element calculations which serve to illustrate the 
creation of hysteresis in a range of circumstances that go from conventionally hysteretic systems, a sandstone, to 
systems like a wood fiber. An essential ingredient in the behavior of these systems, the interaction between the 
mechanical variables and the fluid variables, is accorded special attention. The proper venue for the exploration 
of these systems is (μ,σ ) space and appropriate μ protocols, σ protocols, and combined μ-σ protocols. 
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I. INTRODUCTION	 In this paper we describe two schemes for modeling 
materials with hysteretic response. Macroscopic hysteresis 

In order to have a sample large enough for easy is present either as a deliberate input (mesoscopic hysteretic 
measurement a low-temperature experimentalist forms a elements, hysterons [5]) or as a consequence of self-trapping 
two-dimensional Fermi fluid on a Nuclepore filter [1]. Quan- internal fields. The latter source of hysteresis, analogous to that 
tification of the properties of the Fermi fluid depend on in a random field Ising model [6], is new in the present context. 
knowledge of the surface area on which it resides. The These two sources of hysteresis touch two different physical 
area is found from measurement of an adsorption isotherm limits represented by (1) capillary condensation involving 
[2]. Resonant bar measurements on a Berea sandstone show instabilities that connect mesoscopic fluid configurations and 
nonlinear behavior at modest strain levels that can be related 
to hysteretic features found on subjecting the sandstone to	

by (2) moisture uptake by a fiber that couples strongly to the 
mechanical state of the fiber. 

elaborate stress-strain testing [3]. The principles that inform In this modeling the mesoscopic features in the model 
the preparation of wood products for use are learned in	

are endowed with hysteretic properties. In physical realiza
laboratory studies of shrinkage while drying or moisture 

tions of the modeled systems the hysteresis is conferred 
induced stress, that is, studies of the stress-strain consequences 

by microscopic entities whose precise internal working are 
of exposing a wood sample to moisture [4]. In these examples 

complex and possibly not well understood. The purpose of the 
the response, a strain or a change in moisture content, is a	

phenomenology is to establish the structure of an appropriate 
hysteretic function of the field that drives the system, a stress	

model, for example, symmetries with respect to the fields 
or a chemical potential. A typical material having this type	

involved, couplings among the fields, and in the present context 
of response is a porous material, for example, a Nuclepore 

the etiology of hysteretic behavior. As an example of the filter [2], a sandstone [3], or a wood fiber [4]. 
latter suppose there is hysteretic fluid content in response to a 
chemical potential drive and attending hysteretic strain. Does 

*guyer@physics.umass.edu this imply a hysteretic fluid response to an applied stress? 
†h.a.kim@bath.ac.uk	 Within the domain of Landau theory [7] this question has 
‡Dominique.Derome@empa.ch a definite answer. As we may be outside of that domain 
§Jan.Carmeliet@empa.ch and the domain of reversible thermodynamics the answer to 
‖tencate@lanl.gov	 such a question is very much a part of model construction. 
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FIG. 1. System. A set of parallel pores of length c, areal density 
nA (on area a × b) that have radii normally distributed around 〈R〉 =  
0.1 μm. A pore is in the empty state, E, when there is at most a thin 
fluid film on the surface. It is in the filled state, F , after capillary 
condensation. The pores are coupled by the strain on the absorbent 
that is caused by forces due to the fluid configurations. 

Additionally, mesoscopic phenomenologies often allow one 
to explore parameter domains beyond that of their initial 
inception and correlate seemingly unrelated observations. The 
dynamics of a Berea sandstone is a case in point [3]. 

In preparation for describing the modeling let us look at 
some of the underlying physical events that take place in 
porous materials. Consider a porous sample (the adsorbent) 
having clean, smooth surfaces that is under vacuum and held 
at temperature T . Introduce a small quantity of the gas phase 
of a material that will wet the surface of the sample [8]. The 
material which is on the surface of the absorbent, typically 
self-bound as a liquid, is the adsorbate. That the adsorbate 
wets the surface means that there is an energy advantage for the 
adsorbate to reside on the adsorbents surface. Consequently, 
there will be forces of tension in the adsorbent that attempt 
to expand its surface area. If more gas is admitted into the 
sample chamber, the adsorbate on the pore wall thickens to 
become a cylindrical annulus of liquid with one surface held 
advantageously against the adsorbent and the second surface, 
the free surface toward the pore center, costing the liquid 

surface energy [9]. The free surface tries to pull the adsorbate 
toward the pore center. The adsorbent pulls back. That is, 
the cylindrical annulus of adsorbate tries to pull the walls of 
the adsorbent into the pore space. Forces of compression are 
exerted by the adsorbate on the adsorbent. These forces are 
in addition to the tensions (parallel to the surfaces) caused by 
wetting (Fig. 1). 

Quite possibly the cylindrical annulus of liquid is energeti
cally more expensive than an alternative liquid configuration, 
for example, a capped cylinder, a pore full of liquid with 
surface energy costs only at the pore ends [9,10]. Both liquid 
configurations, cylindrical annulus and capped cylinder, are 
mesoscopic configurations having energies much greater than 
kBT , where kB is the Boltzmann constant. A transition between 
the two is unlikely to occur due to thermal fluctuations. 
However, it will occur when the cylindrical annulus becomes 
absolutely unstable, that is, when there is no restoring force for 
oscillations of its surface. On making transition to the capped 
cylinder configuration the liquid comes under tension from the 
forces associated with the meniscus at the pore ends. These 
forces, delivered by the liquid to the walls of the adsorbent, try 
to pull the adsorbent into the pore space. 

To here we have sketched the evolution of fluid config
urations as more gas is admitted to the sample chamber, 
the chemical potential of the adsorbate increased from near 
−∞ to that of saturated vapor, the chemical potential of 
bulk liquid. [We adopt the convention in which chemical 
potentials are measured from the chemical potential of bulk 
liquid at T . Consequently, the chemical potentials will be in 
the range −∞ < μ  � 0 unless otherwise specified.] If now gas 
is withdrawn from the sample chamber an equally elaborate 
sequence of events takes place in which fluid configurations 
change and in which forces on/in the absorbent change. We do 
not step through this sequence of events in detail. 

The description above is with prejudice. It asks, “How do 
the fluid configurations change the forces?” In a balanced 
treatment, one also asks, “How do the forces change the fluid 
configurations?” In this paper we address both questions. 

A coupled fluid-elastic system is driven by two independent 
fields, the stress σ and the chemical potential μ. The principal 
response to the stress is the strain, ε, and the principal 
response to the chemical potential is the moisture content, u. 
We take the system to be in a sequence of states in response 
to the fields (σ,μ) which are thermodynamic states. By this 
we mean that when the system is in a state we can, in 
principle, make infinitesimal changes in (σ,μ) that can be 
recovered on reversal, for example, a low amplitude sound 
wave in a sandstone that would be described by Biot theory 
[11]. However, there are changes of state. Both the fluid 
configurations and the elastic behavior admit the possibility 
of changes that are not recoverable on reversal. We say these 
changes are due to coarse changes in (σ,μ). In the case 
of certain materials, for example, a sandstone, the dividing 
line between infinitesimal and coarse stress perturbations is 
known [12]. For perturbations of μ there is little guidance from 
experiment except possibly from work involving superfluids 
[13]. Nonetheless, we proceed as if the distinction can be 
respected in modeling and experiment. We will consider (σ,μ) 
protocols that are coarse in nature. For these there will be 
irreversible changes in the elastic behavior and in the behavior 
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TABLE I. Models I, variables. The first row is a list of the variables used in description of a fluid system and in the second row is a similar 
list for an elastic system. The six columns are (a) the applied field that drives the system, the chemical potential μ and the stress σ ; (b)  the basic  
unit of the system that is used in the modeling; (c) the property of the basic unit that is the response to the drive, the moisture content ui , and  
the mechanical variables (displacement, strain, and stress) (xi,εi ,σi); (d) the binary variable that specifies the state of a basic unit [for example, 
η(τ ) = +1 → closed (full),η(τ ) = −1 → open (empty)]; (e) the single particle field, generically hi , to which the state variable responds (the 
superscript P denotes the possible need for a Preisach bookkeeping space, that is, that a basic unit may respond to different values of the single 
particle field according to its state); and (f) the rule for the evolution of the state variable that depends on the relationship of the driving field 
and the single particle field. In the case of a fluid system the basic units respond to the applied field, the chemical potential μ. In the  case of an  
elastic system the basic unit responds to the stress it carries, σi . The  ∗̂ in columns (e) and (f) are reminders that each basic unit may be sensitive 
to values of the single particle field that are specific to it, for example, pore geometry, location in the elastic system, microscopic elastic details 
such as microcracks, etc. The single particle field that enters the rules for change of state may be the single particle field from (e) or an effective 
single particle field that has a contribution due to coupling (see Table II). 

(a) (b) (c) (d) (e) (f) 
Applied Descriptive Local State Single particle Rule for 
field unit response variable field state change 

of unit of unit 

μ Pore or element ui τi hi ↔ μ̂i , (τi)μ ↔ hi , 
having moisture μ̂i

P (μ̂i ,μ̂i
P ) 

response 
σ Elastic element xi,εi ,σi ηi hi ↔ σ̂i , (ηi)σi ↔ hi , 

σ̂i
P (σ̂i ,σ̂i

P ) 

of fluid configurations. We assign these changes to elastic 
elements and to fluid elements. These elements have various 
manifestations; they may be cylindrical pores, sets of wood 
cells, or groups of microfibrils. 

The irreversible changes in the elastic state of an elastic 
element and irreversible changes in the fluid configuration of 
a fluid element are essentially binary, a microcrack is closed 
or open, a pore is full or empty (has only a surface layer of 
fluid). Thus, an essential ingredient of the description is an 
Ising variable ηj = ±1 that specifies the elastic state of each 
elastic element and an Ising variable τi = ±1 that specifies 
the fluid state of each fluid element. The distinction between 
infinitesimal and coarse from above is between changes in σ 

(μ) that leave the set of τ (η) unchanged (infinitesimal) or not 
(coarse). The state of the system is specified by the set of elastic 
element states and the set of fluid element states. The elastic 
element states and the fluid element states change according 
to sets of rules, described below, that relate the effective single 
particle field the element experiences to a critical value of that 
field. See Table I and below. 

We are particularly concerned with modeling coupled 
fluid-elastic systems. There are in principle four couplings of 
interest. These are displayed in Table II. The two diagonal 
couplings are Jij τiτj , the coupling of fluid element i to 
fluid element j , and Kij , the coupling of displacement xi to 
displacement xj . The two off-diagonal couplings are uiRijηj 

(xiPij τj ), the coupling of elastic (fluid) element j to fluid 
(elastic) element i. We examine the consequences of the 
couplings in a sequence of three cases. These are (1) a 
model of a coupled fluid-elastic system, using hysterons, 
that lets us examine important features with a minimum of 
computational detail (Sec. II); (2) a finite element model of 
an elastic system into which we introduce internal forces that 
lead to hysteresis (Sec. III); and (3) a finite element model 
of a coupled fluid-elastic system again with internal forces 
(Sec. IV). Models (2) and (3), in contrast to model (1), in 

which hysteresis is due to hysterons, have hysteresis because 
of the interactions between elastic (fluid) elements. 

II. HYSTERONS 

Coupled fluid-elastic system. We describe a porous system 
in terms of global variables, the strain of the system, ε, the  
moisture content of the system, u, an average stress on the 
system, σ , and the chemical potential in which the system 
resides, μ. The system has no spatial structure. [Contrast this 
with finite element modeling below.] The justification for this 

TABLE II. Models II, coupling. The variables used to describe 
the fluid system are moisture content u and fluid state τ . The  variables  
used to describe the elastic system are the elastic state η, the  strain  ε, 
and the displacement x. There are four possible couplings. (1) Within 
the fluid system Jij couples the moisture state of pore i with the 
moisture state of pore j . (2) Within the elastic system Kij couples the 
displacement of node i to the displacement of node j , and the internal 
forces Qij couple the elastic state of element j to the displacement 
of node i [see case (2) in the text]. (3) Fluid-elastic coupling. The 
first entries in the off-diagonal locations are the generic form of the 
coupling. The second entries are specific examples of the coupling 
that are described in the text as cases (1) and (3). The RFIM would 
correspond to a fluid, driven by μ, in which the state variable τi 

responds to the effective single particle field hi + j Jij τj , where  
the hi and Jij are specified in suitable fashion [6]. 

τ,u η,ε,x 

τ,u Jij τiτj uiRij ηj 

μ̂i = − 2γ 

R(ε) 

Case (1) 
η,ε,x xiPij τj 

μ̂i = μ̂0 
i − �(∇ · u)i 

Case (3) 

Kij xixj 

xj Qij ηj 

Case (2) 

061408-3 
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is that the moisture content in the system is additive over the 
moisture content of the fluid elements (pores) and the strain 
of the system is approximately additive over the strain of the 
elastic elements. To deal with detail in the description of the 
response of the system to elaborate driving protocols we stay 
within mean field theory and look at the behavior of each 
elastic element and each fluid element. 

Moisture content. The pore system consists of N pores, 
i = 1, . . . ,N . Each pore can be in one of 2 states, denoted E 

(for empty) and F (for full), according to the relationship 
of the chemical potential μ to the chemical potential pair 
(μF ,μE) associated with the pore. The chemical potential μF 

is the chemical potential at which a pore makes a transition 
from empty (cylindrical annulus) to full (capped cylinder); the 
chemical potential μE is the chemical potential at which a 
pore makes a transition from full (capped cylinder) to empty 
(cylindrical annulus) (Fig. 1). We assume we have available 
the information necessary to write 

1 
N 

1 − τi 1 
N 

1 + τi 
u = uE(i) + uF (i) , (1)

N 2 N 2 
i=1 i=1 

where u is the moisture content, the sum is over pores, i = 
1, . . . ,N , uE(i) is the amount of fluid in pore i in the empty 
(τi = −1) state, and uF (i) is the amount of fluid in pore i in 
the full (τi = +1) state. There is a rule for the evolution of the 
state variable for each pore, for example, as follows. 

(1) If τi = −1 and μ passes to above μF (i), then τi → +1. 
(2) If τi = +1 and μ passes to below μE(i), then τi → −1. 
(3) The chemical potential pair associated with each pore 

[μF (i),μE(i)] is prescribed from physical arguments given 
below. 

(4) It is quite possible that uE(i) and uF (i) vary with μ and 
σ as, for example, in the use of R(ε) in Eq.  (7) and ∇ · u in 
Eq. (12). 

(5) The system is driven by a chemical potential 
protocol. 

Strain. We make a description of the strain in the same style 
as that of the moisture content. The strain is the sum of the 
strain of M elastic elements, i = 1, . . . ,M , each of which can 
be in one of two strain states, denoted o (for open) and c (for 
closed), according to the relationship of the stress σ to a stress 
pair (σc,σo) associated with the elastic element. The stress σc 

is the stress at which an elastic element makes a transition 
from open to closed (think microcrack, asperity set, or similar 
mesoscopic elastic feature); the stress σo is the stress at which 
an elastic element makes a transition from closed to open. We 
assume we have available the information necessary to write 

1 
M 

1 − ηi 1 
M 

1 + ηi 
ε = εo(i) + εc(i) , (2)

M 2 M 2 
i=1 i=1 

where ε is the strain, the sum is over elastic elements, i = 
1, . . . ,M , εo(i) is the strain of elastic element i in the open 
(ηi = −1) state, and εc(i) is the strain of elastic element i in 
the closed (ηi = +1) state. There is a rule for the evolution 
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of the state variable for each elastic element, for example, as 
follows. 

(1) If ηi = −1 and σ passes to above σc(i), then ηi → +1. 
(2) If ηi = +1 and σ passes to below σo(i), then ηi → −1. 
(3) The stress pair associated with each pore [σc(i),σo(i)] is 

prescribed from physical arguments given below. 
(4) It is quite possible that εo(i) and εc(i) vary with μ and σ 

[see item (4) below Eq. (1)]. 
(5) The system is driven by a stress protocol. 
We note that each fluid element responds to the field μ 

and each elastic element responds to the field σ . In thermal 
equilibrium the chemical potential is invariant at all points in 
a system; it is a global variable. In mechanical equilibrium the 
stress is fed through a system in an anecdotal way, depending 
on details of the arrangement of elastic elements; it is a local 
variable. Thus, the rules here for the evolution of η with σ 

are a mean field approximation. The description in Eqs. (1) 
and (2) suggest the use of a Preisach bookkeeping space [14]. 
The fluid system and elastic system are coupled to one another 
through the dependence of uE , uF , εo, and εc on μ and σ , 
as well as the dependence of the critical pairs (μF ,μE) and 
(σc,σo) on  μ and σ . 

Example with details. To illustrate assembly of the ingredi
ents required to carry through the recipes in Eqs. (1) and (2) we  
look through a particular problem in some detail. We consider 
the isotherm of a fluid that is coupled to the strain field the fluid 
configurations cause. The geometry is that shown in Fig. 1. 
The fluid elements are a set of vertical, nonintersecting pores 
of length c, having areal density nA on area a × b. There is 
no direct pore-pore coupling, Jij = 0. The pore radii, R, are  
drawn from the probability density 

p(R) = Aexp[−(R − R0)2/w2], p(R)dR = 1, 

p(R) R dR = 〈R〉, (3) 

where A is a norming constant, 〈R〉 = R0 = 0.1 μm, and 
w = 0.1 μm. We treat u according to Eq. (1) in detail but 
make a simple approximation to handle Eq. (2). To wit, for a 
wetting fluid, in the E state, there is a thin film of fluid on the 
surfaces of the cylinders. The fluid in the first few layers of 
the film has lower energy because of proximity to the surface 
and causes forces that try to increase the amount of surface. 
These forces (of tension) are present in all fluid configurations 
beyond those for the thinnest films. They cause a prestrain. 
Take the radii that are distributed as in Eq. (3) to be for  the  
material with the prestrain in place. The strains we consider are 
those beyond the prestrain. For a wetting fluid in the F state 
there are forces of tension on the ends of the fluid columns 
due to the pressures p ∼ 2γLV /r , where γLV is the surface 
tension and r is the radius of curvature of the end cap. For an 
approximately uniform spatial distribution of filled pores these 
forces, communicated to the interior of the sample where they 
approximately balance one another, result in net compressive 
forces on the x-z and y-z surfaces (Fig. 1). We write 

div · u = εxx + εyy = (div · u)T + (div · u)C, (4) 

061408-4 
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uE(i) ∼ Ri(ε)hi[R(ε)] and uF (i) ∼ Ri(ε)2, where h(R) is the  
thickness of the fluid film in a pore of radius R in the state E at 

−1 μ. We begin with all pores in the state τi = −1, corresponding 
to μ → −∞  and follow the system through the chemical 

−2 potential protocol shown in the inset in Fig. 2. [The state of the 
fluid system is set by the chemical potential, μ. The chemical 

−3 potential is proportional to ln(Pv/Psv), where Pv is the pressure 
of the unsaturated vapor in which the sample resides and Psv is 
the saturated vapor pressure at T . The ratio Pv/Psv is defined 
to be the relative humidity, RH . Thus, μ ∝ ln(RH ) and μ = 0 
at RH = 1. A third quantity used to characterize the state of 
the fluid system, the capillary pressure, p, is essentially the 
chemical potential since, when p can be defined, nLp = −μ. 
We use μ in description of the physics and μ and RH to show 
results.] 

We show the results of carrying the system through the 
chemical potential protocol in Fig. 3, u as a function of RH , 
and Fig. 4, the compressive strain as a function of μ ∗. In  

μ F −4 

0
−5 

−6 

−7 −14 

−8 
−4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 

μ
E 

both figures the results for � = 0 and for � = −0.025 are 
shown. In the figure of u − RH the open circle curve for 
� = 0 shows an adsorption isotherm that is determined by 
the simple rules for filling and emptying pores that are below 
Eq. (1) and embodied in the Preisach bookkeeping space in 
Fig. 2. The state of the pore system is additive over the state 
of the pores, is hysteretic because the pores are individually 
hysteretic, exhibits end point memory, and exhibits congruence 
(not shown). These properties follow from the fact that the 
Preisach space is static, that is, the pair (μF ,μE) for each 
pore remains unchanged as the system is taken through the 
μ protocol. The case � = 0 is trivial in Fig. 4; there is no 

1 

0.9 

0.8 

0.7 

0.6 

FIG. 2. Preisach space. The chemical potential pairs (μF ,μE) 
are plotted as open circles. [The values of (μF ,μE) are made 
dimensionless by scaling by γLV /(nL〈R〉).] The upper black line is 
the diagonal μE = μF and the lower black line is at μE = 2μF . 
For a pore of radius R the chemical potential for F → E is at 
−2γLV /(nLR) → −2〈R〉/R. The  (μF ,μE) pairs are above the line 
μE = 2μF because the instability that leads to the E → F transition 
is at finite film thickness, that is, at μF < −γLV /(nLR) = μE/2. For 
pores of large radius μF → μE/2 and  μF → 0−. The inset in the 
lower right is the μ ∗ protocol, where the horizontal axis is “time.” 

with u the displacement field, T (C) denoting tension (com
pression), (div · u)T is the prestrain, and 

(div · u)C = −2 
√ 

nA〈R〉 γLV 
nF = � |μ ∗|nF , (5)

κ r  

where nF is the fraction of pores in the F state and � is a 
constant having values less than zero. Here κ is the elastic 
constant of the adsorbent and μ ∗ is the chemical potential 
measured in units of γLV /(nL〈R〉). We get to this result by 
(1) arguing that the net force on a face of the system is √
approximately (〈R〉c)(γLV /r) per pore for a pores and nA u 0.5 
(2) relating the pressure γLV /r to the chemical potential 
|μ| = γLV /(nLr), where nL is the particle number density. 
We modify R according to 

R → R[1 + (div · u)C] = R(ε) = R(u). (6) 

For μE we take 
γ γ 

μE[R(ε)] = −2 ≈ −2 [1 − (div · u)C], (7) 
nLR(ε) nLR(0) 

the chemical potential at the F → E instability of a pore of 
radius R(ε) [10]. For μF we want the chemical potential of the 
E → F instability. This instability is associated with the fluc
tuations of the fluid surface in the empty pore configuration. 
The values of μF scale approximately as −γLV /R(ε) and are 
found from numerical study [10] (see Fig.  2). Thus, the fluid 
elements are coupled to the average fluid state of the system 
[Eqs. (5)–(7)] through the dependence of the (μF ,μE) pairs 
on the strain. 

To complete the description of the system we need the 
moisture content of an element in the E and F states; 

0.4 

0.3 

0.2 

0.1 

0 
0 0.2 0.4 

R
H 

0.6 0.8 1 

FIG. 3. (Color online) Moisture content as a function of relative 
humidity. For no interaction between pores, � = 0 in Eq.  (5), the 
isotherm (open circles) is controlled entirely by the (μF ,μE) pairs.  
For � = −0.025 the interaction distorts the isotherm (solid circles), 
particularly at u >  0.8 where the interaction is very strong. The 
approximately linear behavior of u near RH → 1 is due to the change 
in pressure that occurs when all pores are full of fluid and r → +∞, 
where r is the radius of curvature of liquid at the pore end. The curve 
without symbols is for the case that (μF ,μE) shift with the strain as 
in Eq. (5) but the pore radii are taken as unchanged in the calculation 
of u. 
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μ 

n F
 

−0.05 

−0.1 

−0.15 

−0.2 
−14 −12 −10 −8 −6 −4 −2 0 

μ 

FIG. 4. (Color online) Compressive strain. The moisture depen
dent term in the compressive strain, Eq. (5), is plotted as a function 
of μ ∗ for the two isotherms in Fig. 3, � = 0 (open square at 0) 
and � = −0.025 (solid circles for μ increase and open circles for μ 

decrease). The arrows show the direction of the chemical potential 
change along the curves. There is reversible change in strain with 
change in chemical potential along the double-tipped arrows, that is, 
no change in state. As is often the case the strain stays in. The  inset  
is a schematic representation of the strain-μ result of Amberg and 
McIntosh [15,16]. 

strain [Eq. (5)]. When � = −0.025 the closed circle curve 
in Fig. 3 is found. This isotherm differs from the � = 0 
isotherm noticeably at u > 0.6. At RH > 0.7, nF = 1, and 
u is reversible. The change in u from 0.7 < RH < 1.0 is due 
to the change in the volume of the pore space brought about by 
the compressive stress (see Fig. 4). Below RH ≈ 0.6 the  � = 0 
and � = −0.025 isotherms are very similar. The behavior of u 

for � < 0 involves both the compression, leading to less fluid 
in the pores, and the shift of μF to more negative values. This 
is confirmed with the black curve in Fig. 3; u calculated for the 
artificial case that the (μF ,μE) pair shifts with the strain as in 
Eq. (7) but that the pore radius is unchanged in the calculation 
of u. The strain seen in Fig. 4 is in qualitative accord with the 
measurements of Amberg and McIntosh [15] and recently [16] 
(see the inset in Fig. 4). 

III. FINITE ELEMENT ELASTIC MODEL 

Finite element model of an elastic system. Above we 
introduced a model of the coupled fluid-elastic system and 
illustrated an implementation of the model which focused on 
the fluid. Here we shift to finite element modeling [17] and 
further shift to look only at the elastic system (see Fig. 5). 
That system comprises j = 1, . . . ,M constant strain triangular 
elastic elements [17] that result from a mesh over the area 
a × b (compare Figs. 1 and 5). All elastic elements have the 
same isotropic elastic properties, E (the Young’s modulus) 
and ν (the Poisson ratio). To have the analog of the set of 
discrete displacements hysterons [18], that are used in the 
modeling of hysteretic elastic systems, we introduce a set of 
internal forces. There is one set of forces associated with each 
elastic element that (a) are on the nodes of the elastic element, 
(b) are proportional to the distance from element centroid to 
node, (c) are in the direction from element centroid to node, and 

a 

b 

c 

x 

y 

z 

x 

y 

(a) 

(b) 

(c) 

= -1 = +1 

FIG. 5. Elastic system. (a) The triangular elastic elements are 
elastically identical having elastic constants (E,ν) = (1.0,0.3). 
(b) Each elastic element carries a set of three internal forces that 
are along the line from triangle centroid to vertex and can at most 
change sign, η = ±1. (c) The system is tethered at x = 0 on the  left  
and in y = 0.5 at the left center. It is driven from the right-hand 
side by a force protocol. The x strain is defined as the change in the 
average x displacement of the right-hand side. The y strain is defined 
as the change in the average y separation of the top and bottom. 

(d) have sign ± determined by the state of the elastic element. 
Thus, there is a state variable associated with each elastic 
element, ηj = ±1, which controls the sign of the internal 
forces that an element exerts on its nodes. When the state 
of an elastic element is η = −1 the forces on the nodes of the 
element are outward (tensile) and when the state of an elastic 
element is η = +1 the forces on the nodes of the element are 
inward (compressive) (Fig. 5). The rules for the behavior of the 
state variable are as follows (where one could read o = open 
and c = closed). 

(1) If an elastic element is in state ηj = +1 and the stress 
supported by the elastic element (the internal stress) passes to 
above σo(j ), ηj → −1. 

(2) If an elastic element is in state ηj = −1 and the stress 
supported by the elastic element (the internal stress) passes to 
below σc(j ), ηj → +1. 

Like the modeling above this model suggests the use of a 
Preisach bookkeeping space. The stress pair for each elastic 
element (σo,σc) is determined by a model of the elastic features 
in the elastic element which confer hysteretic behavior on it. 
The important difference between the model here and that 
above is that the field that determines the behavior of an elastic 
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−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

σ 
o 

FIG. 6. (σo,σc) Preisach space. (Top) Preisach space with off-
diagonal elements, σc � σo, used in the  calculations  leading to the  
results in Fig. 8 (left panels). (Bottom) Preisach space with diagonal 
elements only, σc = σo, used in the calculations leading to the results 
in Fig. 8 (middle, right panels). (Inset) Schematic of μ protocol used 
in all calculations. 

element is not the mean field associated with the system, the 
applied stress, but rather the stress the elastic element supports. 
A sketch of the finite element equations we employ is given in 
the Appendix. 

−0.31 +0.30 

1 1 

0.8 0.8 

0.6 0.6 

0.4 0.4 

0.2 0.2 

0 0 

0 0.5 1 0 0.5 1 

FIG. 7. (Color online) Forces on system. Each node experiences 
a net internal force which is the sum of the forces from the elements 
that touch it. (Left) The net internal forces are shown as lines pointing 
from the nodes (dots) at applied stress σxx = −0.31 (a compressive 
applied stress with most elastic elements in the η = +1 state). (Right) 
The net internal forces are shown as lines pointing from the nodes 
(dots) at applied stress σxx = +0.30 (a tensile applied stress with 
most elastic elements in the η = −1 state). Note, the internal forces 
on a node are in random directions and typically balanced (small) in 
the interior of the system in both cases. The forces are unbalanced 
primarily on the system surface where they point mostly inward 
(outward) on the left (right). 
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Example with details. To illustrate the assembly of the 
ingredients required to carry through the recipe above we look 
at a particular problem in some detail. The elastic elements 
are 328 triangles (involving 185 nodes) of a mesh over a 1 × 1 
space, M = 328, Nn = 185. (There are 3M/Nn ≈ 5 elastic 
elements sharing a node.) We work near the fiducial stress 
σ = 0 with stress scaled so that the values of the critical 
stresses (σc,σo) are small compared to 1. Similarly, we choose 
the strength of the internal forces so that the stresses they 
produces are of the same order as the critical stresses; that 
is, we want to easily see the working of the internal forces. 
Each elastic element is assigned the Young’s modulus E 

and Poisson’s ratio ν, (E,ν) = (1,0.3). We take σo normally 
distributed around σo = 0 with width w = 0.070, that is, 

P (σo) = Cexp − σo 
2/w2 , dσo P (σo) = 1. (8) 

The probability density P (σc) is similarly distributed with 
σc � σo (Fig. 6). The system is driven by the applied stress 
caused by a uniform set of forces applied to the nodes on its 
right edge (Fig. 5). The applied stress protocol is shown in the 
inset in the lower right of Fig. 6. It starts at  σxx < min(σo). 
Thus, initially η = +1 for all elastic elements. We monitor the 
behavior of the system with the x strain (the departure of the 
average position of the right edge of the system from its initial 
value) and the y strain (the change in the separation of the 
average position of the top edge form the average position of 
the bottom edge). The changes in state of an elastic element 
are made when σxx in the element pass (σo,σc), as described 
in the rules above. 

Preliminary to looking at certain results in some detail we 
call attention to Fig. 7, where we show the internal forces on 
each node of the system when it is in compression (tension) 
due to the applied stress. When in compression (tension) most 
of the elastic elements are in the η = +1 (η = −1) state. The 
forces an element exerts on itself try to compress (expand) 
the element. By construction, the sum of the forces that an 
element exerts on its nodes is zero. Consequently, regardless 
of the state of the set of elements, the internal forces exert no 
net force on the system. The internal forces tend to cancel in 
the interior of the system (each interior node feels the force 
from the approximately five elastic elements arrayed around 
it). The internal forces appear primarily as surface forces that 
try to uniformly compress (expand) the system. [The argument 
leading to Eq. (5) are supported by Fig. 7.] 

We look at the behavior of the x and y strains for three cases 
in Fig. 8 to bring out the role played by the internal forces. 

(1) Take the system through the stress protocol using the 
off-diagonal (σc,σo) distribution in Fig. 6 (top) and the applied 
stress version of the change of state rules, that is, the applied 
stress is used in place of the internal stress in the rules. See the 
ε − σ curves in Fig. 8 (left panels). 

(2) Take the system through the stress protocol using the 
diagonal (σc,σo) distribution in Fig. 6 (bottom) and the applied 
stress version of the change of state rules; that is, the applied 
stress is used in place of the internal stress in the rules. See the 
ε − σ curves in Fig. 8 (center panels). 

(3) Take the system through the stress protocol using the 
diagonal(σc,σo) distribution in Fig. 6 (bottom) and the internal 
stress version of the change of state rules, that is, the rules in 
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FIG. 9. Effect of internal forces. The x strain as a function 
−0.05 −0.05 −0.05 

−0.1 −0.1 −0.1 

−0.4−0.2 0 0.2 −0.4−0.2 0 0.2 −0.4−0.2 0 0.2 
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FIG. 8. (Color online) Strain vs applied stress. For all panel sets 
(top) is the x strain as a function of stress and (bottom) is the y strain 
as a function of stress. (Left two panels) The strength of the internal 
forces is nonzero and the Preisach space is off-diagonal. (Center two 
panels) The strength of the internal forces is zero and the Preisach 
space is diagonal. (Right two panels) The strength of the internal 
forces is nonzero and Preisach space is diagonal. The stress protocol 
in all cases is that shown in the inset in Fig. 6 (bottom) and in all 
cases � = 0.035. 

the first paragraph of this section. See the ε − σ curves in 
Fig. 8 (right panels). 

When there are no internal forces that can expand/contract 
the elastic elements, we have εxx ∝ σxx and εyy ∝ −σxx . In the  
presence of internal forces, as the stress crosses over values of 
(σo,σc) that deploy them, the stress-strain relation steps from 
one ε ∝ σ curve to a second ε ∝ σ curve. In the case of the 
stress protocol being used here the system begins at negative 
stress with internal forces that try to hold it in a compressed 
state. While in this state the elastic elements respond with ε ∝ 
σ . Near σ = 0 the internal forces switch from compressive 
to tensile and bring about additional displacements and a 
transition from one ε ∝ σ curve to another. Once the internal 
forces are primarily tensile (they try to hold the system in 
the tensile state) further response to stress is ε ∝ σ with the 
same slope as in the compressed state. For case (1), the switch 
from compressed state to tensile state occurs as the applied 
stress crosses over the range of values of σo. The switch from 
tensile state to compressed state, on the second leg of the stress 
protocol, occurs as the applied stress crosses over the range of 
values of σc. The strain curves are hysteretic because for any 
elastic element σc � σo (see Fig. 8). The hysteretic response 
of the system to stress arises from the hysteretic response of 
the individual elastic elements to the applied stress. These 
observations are confirmed with the result for case (2) [Fig. 8 
(center)], for which the elastic elements respond to the applied 

of stress for three values of the internal force, � = 0 (asterisks), 
� = 0.1 (open squares), and � = 0.2 (solid circles). The Preisach 
space is diagonal. The elastic elements respond to the internal 
stress. The hysteresis loops are sharp because of the strength of the 
internal forces (compare to Fig. 8). If this circumstance obtained in 
physical realizations the sharp step, a mechanical avalanche, would 
be associated with a burst of acoustic emission. 

stress but σc = σo; there is no hysteresis in the response of the 
elastic elements. The working of the internal forces is seen as 
a reversible displacement near σ ≈ 0 that carries the system 
from one ε ∝ σ curve to another. 

With this preparation we look at case (3); the Preisach space 
is diagonal and the change of state of the elastic elements 
involves the internal stresses [see Fig. 8 (right)]. The stress-
strain curve is hysteretic, its hysteresis being conferred by 
interaction among elastic elements. The explanation for this 
behavior is that the internal forces act as a local stress field that 
adds to the applied stress to produce an effective stress which 
will change the elastic state at σo. When the system starts with 
all elastic elements in state η = +1 and the applied stress is 
brought up from below the local stress works to oppose the 
changes in applied stress. The change in state from η = +1 to  
η = −1 is at  

σ = σapplied + σinternal > σo, (9) 

σapplied > σo − σinternal = σo + η|σinternal| > σo, (10) 

where the sign on the right-hand side is chosen knowing that 
for η = +1 the internal stress is negative (e.g., Fig. 7). Thus, an 
elastic element that might change elastic state at σapplied = σo is 
trapped in its present state by a stress field that the present state 
supports. We term this behavior self-trapping. It is the source 
of the hysteresis in Fig. 9. (An analogous argument applies 
to the response of the elastic elements to stress as the applied 
stress is brought down from above.) In Eq. (10) we have an  
effective σo that depends on σ in a way which produces much 
the same effect as an off-diagonal Preisach space. Because of 
this dependence we should expect the details of the strain as 
a function of stress to depend on the strength of the internal 
forces. Indeed, this is the case as seen in Fig. 9. As a final 
illustration of the behavior of the of the model in case (3) we 
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All elements have the same isotropic elastic properties, K (the1 
Young’s modulus) and ν (the Poisson’s ratio). All elements 

0.8 have a moisture content that is a function of their geometry. 
There is a set of internal forces associated with each element 
that (a) are on the nodes of the element, (b) are proportional 

0.6 

0.4 
to the distance from element centroid to node, (c) are in the 

0.2 direction from element centroid to node, and (d) have sign 

xx ± determined by the state of the element. Thus, there is a 
state variable associated with each element, ηj = ±1, which ε

−0.2 

−0.4 

−0.6 

−0.8 

−1 
−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 

σ 

FIG. 10. End point memory. The x strain as a function of stress. 
For this case the interaction was taken to be very strong so that the 
transition of the internal forces from closed (compressed) to open (in 
tension) is very abrupt (compare to Figs. 8 and 9). 

show evidence of end-point memory in Fig. 10. The model we 
are dealing with is qualitatively similar to the random field 
Ising model (RFIM) [6] at  T = 0. 

IV. FINITE ELEMENT FLUID MODEL 

Finite element model of coupled elastic-fluid systems. Let 
us adapt the finite element model above to the case of a coupled 
elastic-fluid system. We do this having in mind systems 
typified by wood, in which (for low moisture content) the fluid 
configurations are not pools of liquid but rather H2O molecules 
in cellulose fibrils, cell walls, tracheids, etc. [4]. Thus, the 
fluid elements are contiguous with the elastic elements. We 
use element in place of either elastic element or fluid element. 
The system comprises j = 1, . . . ,M  triangular elements that 
result from a mesh over the area a × b (compare Figs. 1 and 5). 

0.5 

0.4 

0.3 

0.2 

u 

0.1 3 

0 

2 

μ E
 

−0.1 

−0.2 

controls the sign of the internal forces an element exerts on 
its nodes. When the state of an element is η = −1 the forces 
on the nodes of the element are outward (tensile) and when 
the state of an element is η = +1 the forces on the nodes 
of the element are inward (compressive) (Fig. 5). In contrast 
to the model above of an elastic system, here the rules for 
the behavior of the state variable are driven by the chemical 
potential. We begin with rules appropriate to a wood fiber. 

(1) If an element is in state ηj = +1 and the chemical 
potential passes to above μF (j ), ηj → −1, 

(2) If an element is in state ηj = −1 and the chemical 
potential passes to below μE(j ), ηj → +1. 

The chemical potential pair for each element (μF ,μE) is  
determined by a model of the chemistry of the adsorbate and 
of the coupling of that chemistry to the elastic state of the 
element. We adopt a simple phenomenology 

μF (j ) → μF (j )0 − �(∇ · u)j , 

μE(j ) → μE(j )0 − �(∇ · u)j , (11) 

where (∇ · u)j is the strain on element j . When an element 
is in state ηj = +1 it can accommodate no adsorbate; when 
in state ηj = −1 it can accommodate an amount of adsorbate 
given by 

1 − ηj Aj 
uj = (∇ · u)j , (12)

2 A 

x 10 
7 

6 

5 

4 

1 

−0.3 

0
−0.4 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 

μ 
−0.5


−0.5 0 0.5

μ FIG. 12. (Color online) Moisture content vs chemical potential. F 

The moisture content, u, as a function μ for the chemical potential 
FIG. 11. (μF ,μE) Preisach space. The pairs (μF ,μE = μF ) used  protocol in the inset of Fig. 11 [μ increase (solid circles) and μ 

for the studies in Figs. 12 to 17. (Inset) Schematic of the μ protocol decrease (open circles)]. Compare to the strain for the same μ protocol 
used in Figs. 12 to 16. in Fig. 13. The moisture content stays in. 
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where Aj is the area of element j , A is the sum of the 0.25 

areas of the elements, A = a × b = 1, and the first factor 
accounts for the dependence of uj on state. The combination 

0.2 

of Eqs. (11) and (12) implies that when the chemical potential 0.15 

is such that an element can accommodate adsorbate, make the 
transition η = +1 to  η = −1, tensile forces appear locally in 0.1 

the system. These forces contribute to (∇ · u) throughout the 0.05 

system, making the transition η = +1 to  η = −1 elsewhere 
0ε

more likely. The feedback between (∇ · u)j and (∇ · u) is a  

u 0.5 
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FIG. 13. Strain vs chemical potential. The x strain as a function μ 

for the chemical potential protocol in the inset of Fig. 11 [μ increase 
(solid circles) and μ decrease (open circles)]. Compare to the moisture 
content for the same μ protocol in Fig. 12. 

We look a little more closely at the behavior of the system 
in Fig. 15 where we show the results of a test of congruence for 
u as a function of μ. A description of the chemical potential 
protocol used is in the caption to Fig. 15. The  two  u-μ loops are 
not equivalent with the lower loop being fatter. The secondary 
response, εxx , exhibits qualitatively similar lack of congruence 
(not shown). 

When the system is strained with an applied stress we expect 
the capacity for moisture uptake to change. In Fig. 16 we 
show u as a function of μ for three values of applied force 
corresponding to σxx = −0.0025, 0.0, + 0.0025. All curves 
were normed to the maximum moisture content at σxx = 0. 
When the system is under compression (solid circles), the 

1 

0.9 

0.8 

0.7 

0.6 

ferromagnetic-like coupling. 
Example with details. To illustrate the assembly of the 

ingredients required to carry through the recipe above we 
look at a particular problem in some detail. The elements 
are 328 triangles having 185 nodes, etc., as above. We work 
near the fiducial chemical potential μ = 0 with chemical 
potential scaled so that the values of the critical chemical 
potentials (μF ,μE) are small compared to 1. Similarly, we 
choose the strength of the internal forces so that the strains they 
produce make a noticeable change in (μF ,μE). Each element 
is assigned the Young’s modulus E and Poisson ratio ν, 
(E,ν) = (1,0.3). We take μF normally distributed around 
μF = 0 with width w = 0.125, that is, 

P (μF ) = Cexp − μ2 
F /w2 , dμF P (μF ) = 1. (13) 

Like case (2) for the elastic system we introduce no a priori  
hysteresis by taking μE = μF . The system is driven by a 
chemical potential protocol, shown in the inset in the lower 
right of Fig. 11. It starts at  μ <  min(μF ). Thus, initially 
η = +1 for all elements. We monitor the behavior of the 
system with the x strain (the departure of the average position 
of the right edge of the system from its initial value), the 
y strain (the change in the separation of the average position 
of the top edge form the average position of the bottom edge), 
and the moisture content, 

M 

u = uj . (14) 
j=1 

The changes in state of an element are made when the chemical 
potential passes (μF ,μE) as described in the rules above. 
[When we put an external force on the system it will be 
applied, as for the elastic model, uniformly to the nodes on 
the right-hand side.] 

Let us look through a sequence of results. In Figs. 12 and 13 
we show u and εxx as a function of μ for the protocol in the 
inset of Fig. 11. Both  u and εxx are hysteretic functions of μ 

(compare to Fig. 8). The hysteresis, of the strain stays in 
variety, results from the ferromagnetic-like interaction of the 
moisture content with itself. [The rule of thumb strain stays in 
captures the essentials of a hysteretic σ -ε curve. As the stress 
leaves a largest value there is more strain than there was on 
stress approach to that value. The strain stays in the system.] 
The system is driven by the chemical potential protocol and the 
strains observed result from the forces the fluid configurations 
bring to bear. Because we have made the choice for uj in 
Eq. (12), u and εxx behave very similarly as a function of μ, 
however, not identically. In Fig. 14 u is seen to be a weakly 
hysteretic function of εxx . 

0.4 

0.3 

0.2 

0.1 

0 
−0.2 −0.1 0 

ε 
xx 

0.1 0.2 

FIG. 14. u-ε hysteresis. The moisture content as a function of 
the strain for the chemical potential protocol in the inset of Fig. 11, 
μ increase (solid circles) and μ decrease (open circles). See Figs. 12 
and 13. 
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FIG. 16. (Color online) Applied stress. The moisture content 

as a function of μ for three repetitions of the chemical potential 
−0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 protocol in the inset of Fig. 11 at successively larger applied

u 
μ stress, σxx = −0.0025,0.0, + 0.0025 (solid circles, open circles, and 

FIG. 15. Congruence test. The moisture content as a function 
asterisks, respectively). 

2.8 

2.7u 

of μ for a modification of the chemical potential protocol in the 
inset of Fig. 11 to test for congruence. The modification involves 
two interior loops, μ = 0 → −0.12+ → 0 on  μ increase and μ = 
−0.12+ → 0 → −0.12+ on μ decrease. The part of the u-μ curve 
not shown overlays that in Fig. 12. There is qualitatively similar lack 
of congruence in the corresponding strain-μ curve. 

volume of the space is reduced and the maximum moisture 
content is reduced. Just the opposite occurs when the system 
is under tension (asterisks). 

To here we have seen the response of the system to separate 
chemical potential and applied stress protocols. In Fig. 17 we 
show the behavior of εxx and u as a function of μ when the 
system is carried through the mixed (μ,σxx) protocol shown 
in Fig. 18. In that protocol the system is brought to μ = 0 
under compression, σxx = −0.0025, and then carried away 
and returned to this point around a closed loop in (μ,σxx). 
On return to (0, − 0.0025) both εxx and u continue on the 
trajectory that initially brought them to (0, − 0.0025). Both 

the hysteresis results from the self-trapping of an internal field. 
This has been illustrated for the elastic model and the fluid 
model in this paper. The essentials of what is happening are 
that the critical field values that trigger a change in state, for 
example, σo for the elastic model and μF for the fluid model, 
are modified by the internal forces to maintain the current 
state. In both limits we consider the coupling between the 
variables which describe the fluid response and the variables 
that describe the mechanical response. In the hysteron limit 
this coupling brings about a quantitative change in features 
already present without the coupling. In the self-trapping limit 
it is the coupling that gives rise to the interaction that causes 
the hysteretic response. 

1 

0.5 

0μ 

εxx and u have end point memory for closed loops in (μ,σxx) −0.5 

space. 
−1 

0 50 100 150 200 250 

V. CONCLUSION 4
x 10 

In this paper we have examined a sequence of models of 2 
systems with hysteretic elasticity, hysteretic moisture content, 

σ 0
and coupled elasticity and moisture content. It is traditional to 
get macroscopic hysteresis from the working of an assembly 
of microscopic hysteretic elements [18]. However, as is known 
in a different context [6], suspected in the current context [19], 
and as the models we have introduced show, there is another 
route to hysteresis. There are circumstances in which systems 
evolve among mesoscopic structures that are not easily reached 
from one another. To these the idea of getting macroscopic 
hysteresis from mesoscopic hysteresis is usefully applied. This 
is the hysteron limit. There are other circumstances in which 

−2 

−4 
0 50 150 250100 200 

time 

FIG. 17. End point memory (σ,μ) protocol. (Top) The chemical 
potential as a function of time. (Bottom) The applied stress as a 
function of time. The chemical potential-stress protocol from t = 50 
to t = 200 is a closed loop in (μ,σ ) space. The strain response and 
moisture response to this protocol are shown in Fig. 17. 
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which when the first term on the right-hand side is integrated 
0.04 3 

by parts reduces to � L � L 
0.03 

δu ρ ¨ δε (Kε) dxu dx  = −  
0 0 � L0.02 

+ δu p(x) dx + F (δu)L − F (δu)0. 
2.5 0 

0.01 (A4) 

u 

We write � � 
u(x) = Hn(x) un, δu(x) = Hn(x) δun, 

n � 
n 

(A5) 
δε(x) = Bn(x)δun, 

n 

ε x
x The finite element equations follow upon representing u(x) 

in terms of interpolation functions, Hn(x), which connect it 
to the displacement amplitudes un at the nodes n = 1, . . . ,N . 

−0.01 

2 

−0.02 

−0.03 

−0.04 1.5 
−0.2 −0.1 0 0.1 −0.2 −0.1 0 0.1 

μ μ 

FIG. 18. (Color online) End point memory. The x strain (left) and 
moisture content (right) as a function of μ for the (μ,σ ) protocol in 
Fig. 18. A closed loop in (μ,σxx) begins at the feathers of the right 
arrow (the end of the arrow opposite the tip) and returns to these 
feathers (50 → 200 in Fig. 18). 

In the self-trapping limit a finite element description, which 
spans three scales, is used. We seek answers on the largest 
scale (the macroscopic scale 1 × 1) from calculation at the 
mesoscopic scale (the scale of an element) that employ forces 
developed from a picture of the microscopic scale. As no 
specific scale is introduced this approach can be adapted to 
the scale of interest. A hierarchical system like wood is a 
case in point. The mesoscale could be a wood fiber with the 
microscale corresponding to chemistry within cellulose fibrils. 
The mesoscale could be that of a wood cell with the microscale 
corresponding to wood fibers. 

APPENDIX 

In this appendix we sketch the derivation of a set of finite 
element equations with emphasis on the construction of the 
internal forces. For illustrative purposes the system is on a 
D = 1 line 0 � x � L. The equation of motion for the scalar 
displacement field u(x) is  

∂ 
ρü = (Kε) + p(x), (A1)

∂x

where p(x) are the internal forces (to be specified below) and 
u is subject to the boundary conditions 

(Kε)0 = F, (Kε)L = F, (A2) 

F is the applied force, and ε = ∂u/∂x. The weak form [17] of  
Eq. (A1) is  � L � L ∂ 

δu ρ ¨ δuu dx  = (Kε) dx 
0 0 ∂x� L 

+ δu p(x) dx, (A3) 
0 

where Bn(x) = ∂Hn(x)/∂x. Use of these equations in Eq. (A4) 
results in 

� � L 

δunüm Hn(x) ρHm(x) dx 
0 n m 

� � L 

= −  δunum Bn(x)KBm(x) dx 
0 n m 

(A6) � L 

+ δun Hn(x) p(x) dx 
0 n 

+F δunHn(L) − F δunHn(0). 
n n 

In mechanical equilibrium the term on the left-hand side is 
zero. The equation for us is found by putting all δun = 0 
except δus , to wit, � L 

Ksmum =FHs(L) − FHs(0)+ Hs(x) p(x) dx, (A7) 
0 m 

where � L 

Ksm = Bs(x)KBm(x) dx (A8) 
0 

is the stiffness matrix. 
For the internal forces, p, we take a sum over  pi a set of 

force dipoles [20]. The dipole pi , 

pi = fiηi[δ(x − bi + i) − δ(x − bi − i)], (A9) 

is centered at bi , has strength fi , has size 2i , 
and has a sign that depends on its state ηi = ±1. 
We take bi to be at the center of element i and 
i such that bi ± i are the nodes of element i. 
We identify the state of a dipole with the state of the element 
it resides on. Then equal and opposite forces will be exerted 
by pi on the nodes i and i + 1 associated with element i. We  
have � L 

Hs(x) pi(x) dx = (2f )sηs − (2f )s−1ηs−1. 
0 i 

(A10) 
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Inserting this equation into Eq. (A7) we have  This mechanical problem is completed with the rules that 

Ksmum = FHs(L) − FHs(0)	 relate the state of an element to a property of the element, 
for example, the stress carried by the element or the moisture 

m +(2f )sηs − (2f )s−1ηs−1. (A11) state of the element 
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