158 research outputs found

    Experimental study on long spanning composite cellular beam under flexure and shear

    Get PDF
    YesThis paper describes a sequence of experiments on a long-span asymmetric composite cellular beam. This type of beam has become very popular, combining the composite action between the steel and concrete with the increased section depth, compared with more commonly used solid-web I sections. Openings in the steel web also reduce the self-weight and can accommodate the passage of service ducts. Eurocode 4 recommends a high degree of shear connection for asymmetric composite beams despite the practical difficulties in achieving this. Recent research suggests that the required degree of shear connection could be reduced, particularly for beams that are unpropped during construction. However, little test data exists to verify the behaviour of unpropped composite cellular beams. Therefore two series of tests were conducted on a 15.26 m long asymmetric composite cellular beam with regular circular openings and an elongated opening at the mid-span. The degree of shear connection was 36%, less than half of that recommended in Eurocode 4, and the beam was unpropped during construction. The beam was subjected to uniformly distributed loading and shear load during the tests. The end-slip, mid-span vertical deflection, shear connector capacity and strain distribution were examined. The beam failed at an applied uniform load of 17.2 kN/m2 (3.4 × design working load 5.0 kN/m2). The member withstood an applied shear load that was 45% higher than predicted, and exhibited a Vierendeel mechanism at the elongated opening. Overall, these tests demonstrated the potential of unpropped composite cellular beams with low degrees of shear connection.RFC

    A shooting algorithm for problems with singular arcs

    Get PDF
    In this article we propose a shooting algorithm for a class of optimal control problems for which all control variables appear linearly. The shooting system has, in the general case, more equations than unknowns and the Gauss-Newton method is used to compute a zero of the shooting function. This shooting algorithm is locally quadratically convergent if the derivative of the shooting function is one-to-one at the solution. The main result of this paper is to show that the latter holds whenever a sufficient condition for weak optimality is satisfied. We note that this condition is very close to a second order necessary condition. For the case when the shooting system can be reduced to one having the same number of unknowns and equations (square system) we prove that the mentioned sufficient condition guarantees the stability of the optimal solution under small perturbations and the invertibility of the Jacobian matrix of the shooting function associated to the perturbed problem. We present numerical tests that validate our method.Comment: No. RR-7763 (2011); Journal of Optimization, Theory and Applications, published as 'Online first', January 201

    Observation of exclusive DVCS in polarized electron beam asymmetry measurements

    Full text link
    We report the first results of the beam spin asymmetry measured in the reaction e + p -> e + p + gamma at a beam energy of 4.25 GeV. A large asymmetry with a sin(phi) modulation is observed, as predicted for the interference term of Deeply Virtual Compton Scattering and the Bethe-Heitler process. The amplitude of this modulation is alpha = 0.202 +/- 0.028. In leading-order and leading-twist pQCD, the alpha is directly proportional to the imaginary part of the DVCS amplitude.Comment: 6 pages, 5 figure

    Electron Scattering From High-Momentum Neutrons in Deuterium

    Full text link
    We report results from an experiment measuring the semi-inclusive reaction d(e,eâ€Čps)d(e,e'p_s) where the proton psp_s is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CLAS detector. A reduced cross section was extracted for different values of final-state missing mass W∗W^{*}, backward proton momentum p⃗s\vec{p}_{s} and momentum transfer Q2Q^{2}. The data are compared to a simple PWIA spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. A ``bound neutron structure function'' F2neffF_{2n}^{eff} was extracted as a function of W∗W^{*} and the scaling variable x∗x^{*} at extreme backward kinematics, where effects of FSI appear to be smaller. For ps>400p_{s}>400 MeV/c, where the neutron is far off-shell, the model overestimates the value of F2neffF_{2n}^{eff} in the region of x∗x^{*} between 0.25 and 0.6. A modification of the bound neutron structure function is one of possible effects that can cause the observed deviation.Comment: 33 pages RevTeX, 9 figures, to be submitted to Phys. Rev. C. Fixed 1 Referenc

    Complete measurement of three-body photodisintegration of 3He for photon energies between 0.35 and 1.55 GeV

    Full text link
    The three-body photodisintegration of 3He has been measured with the CLAS detector at Jefferson Lab, using tagged photons of energies between 0.35 GeV and 1.55 GeV. The large acceptance of the spectrometer allowed us for the first time to cover a wide momentum and angular range for the two outgoing protons. Three kinematic regions dominated by either two- or three-body contributions have been distinguished and analyzed. The measured cross sections have been compared with results of a theoretical model, which, in certain kinematic ranges, have been found to be in reasonable agreement with the data.Comment: 22 pages, 25 eps figures, 2 tables, submitted to PRC. Modifications: removed 2 figures, improvements on others, a few minor modifications to the tex

    A Kinematically Complete Measurement of the Proton Structure Function F2 in the Resonance Region and Evaluation of Its Moments

    Get PDF
    We measured the inclusive electron-proton cross section in the nucleon resonance region (W < 2.5 GeV) at momentum transfers Q**2 below 4.5 (GeV/c)**2 with the CLAS detector. The large acceptance of CLAS allowed for the first time the measurement of the cross section in a large, contiguous two-dimensional range of Q**2 and x, making it possible to perform an integration of the data at fixed Q**2 over the whole significant x-interval. From these data we extracted the structure function F2 and, by including other world data, we studied the Q**2 evolution of its moments, Mn(Q**2), in order to estimate higher twist contributions. The small statistical and systematic uncertainties of the CLAS data allow a precise extraction of the higher twists and demand significant improvements in theoretical predictions for a meaningful comparison with new experimental results.Comment: revtex4 18 pp., 12 figure

    eta-prime photoproduction on the proton for photon energies from 1.527 to 2.227 GeV

    Full text link
    Differential cross sections for the reaction gamma p -> eta-prime p have been measured with the CLAS spectrometer and a tagged photon beam with energies from 1.527 to 2.227 GeV. The results reported here possess much greater accuracy than previous measurements. Analyses of these data indicate for the first time the coupling of the etaprime N channel to both the S_11(1535) and P_11(1710) resonances, known to couple strongly to the eta N channel in photoproduction on the proton, and the importance of j=3/2 resonances in the process.Comment: 6 pages, 3 figure
    • 

    corecore