158 research outputs found

    The importance of Crab-eating Macaques (Macaca fascicularis) for the epidemiology of trypanosomiasis in the Philippines

    Get PDF
    Le sang de 343 singes fût examiné pour la prévalence de l’infection à trypanosomes. Un seul s’avéra positif en milieu de culture. L’identité de Trypanosoma evansi fut exclue, M. fascicularis, cependant se montrait susceptible à cette espèce. Les trypanosomes isolés étaient passagers aux cultures et transmis avec succès à M. fascicularis, Rattus rattus mindanensis, des souris de laboratoires et aux punaises. L’espèce des trypa nosomes fut classifiée comme Trypanosoma conorhini ( Megatrypanum ). M. fascicularis est considéré comme un hôte définitif accidentel et comme un réservoir potentiel du Surra.During field studies in the Philippines on trypanosomiasis in crab- eating macaques, 1 of 343 monkeys proved to be trypanosomes-positiv. The identity of the parasite with Trypanosoma evansi could be excluded. Macaca fascicularis however proved to be susceptible to T. evansi. The trypanosome isolates could be passaged in culture medium. They also could be transmitted to Macaca fascicularis, Rattus rattus minda nensis, laboratory mice and to Triatomine bugs. The trypanosomes were excreted in the faeces of the bugs after multiplication in the gut. The flagellates were classified as Trypanosoma (Megatrypanum) conorhini. The crab-eating macaque has to be considered to be an accidental final host

    Impact of population growth and population ethics on climate change mitigation policy

    Get PDF
    Future population growth is uncertain and matters for climate policy: higher growth entails more emissions and means more people will be vulnerable to climate-related impacts. We show that how future population is valued importantly determines mitigation decisions. Using the Dynamic Integrated Climate-Economy model, we explore two approaches to valuing population: a discounted version of total utilitarianism (TU), which considers total wellbeing and is standard in social cost of carbon dioxide (SCC) models, and of average utilitarianism (AU), which ignores population size and sums only each time period’s discounted average wellbeing. Under both approaches, as population increases the SCC increases, but optimal peak temperature decreases. The effect is larger under TU, because it responds to the fact that a larger population means climate change hurts more people: for example, in 2025, assuming the United Nations (UN)-high rather than UN-low population scenario entails an increase in the SCC of 85% under TU vs. 5% under AU. The difference in the SCC between the two population scenarios under TU is comparable to commonly debated decisions regarding time discounting. Additionally, we estimate the avoided mitigation costs implied by plausible reductions in population growth, finding that large near-term savings ($billions annually) occur under TU; savings under AU emerge in the more distant future. These savings are larger than spending shortfalls for human development policies that may lower fertility. Finally, we show that whether lowering population growth entails overall improvements in wellbeing—rather than merely cost savings—again depends on the ethical approach to valuing population

    Epigenetic Silencing of Spermatocyte-Specific and Neuronal Genes by SUMO Modification of the Transcription Factor Sp3

    Get PDF
    SUMO modification of transcription factors is linked to repression of transcription. The physiological significance of SUMO attachment to a particular transcriptional regulator, however, is largely unknown. We have employed the ubiquitously expressed murine transcription factor Sp3 to analyze the role of SUMOylation in vivo. We generated mice and mouse embryonic fibroblasts (MEFs) carrying a subtle point mutation in the SUMO attachment sequence of Sp3 (IKEE553D mutation). The E553D mutation impedes SUMOylation of Sp3 at K551 in vivo, without affecting Sp3 protein levels. Expression profiling revealed that spermatocyte-specific genes, such as Dmc1 and Dnahc8, and neuronal genes, including Paqr6, Rims3, and Robo3, are de-repressed in non-testicular and extra-neuronal mouse tissues and in mouse embryonic fibroblasts expressing the SUMOylation-deficient Sp3E553D mutant protein. Chromatin immunoprecipitation experiments show that transcriptional de-repression of these genes is accompanied by the loss of repressive heterochromatic marks such as H3K9 and H4K20 tri-methylation and impaired recruitment of repressive chromatin-modifying enzymes. Finally, analysis of the DNA methylation state of the Dmc1, Paqr6, and Rims3 promoters by bisulfite sequencing revealed that these genes are highly methylated in Sp3wt MEFs but are unmethylated in Sp3E553D MEFs linking SUMOylation of Sp3 to tissue-specific CpG methylation. Our results establish SUMO conjugation to Sp3 as a molecular beacon for the assembly of repression machineries to maintain tissue-specific transcriptional gene silencing

    Ultra-Rare Genetic Variation in the Epilepsies : A Whole-Exome Sequencing Study of 17,606 Individuals

    Get PDF
    Sequencing-based studies have identified novel risk genes associated with severe epilepsies and revealed an excess of rare deleterious variation in less-severe forms of epilepsy. To identify the shared and distinct ultra-rare genetic risk factors for different types of epilepsies, we performed a whole-exome sequencing (WES) analysis of 9,170 epilepsy-affected individuals and 8,436 controls of European ancestry. We focused on three phenotypic groups: severe developmental and epileptic encephalopathies (DEEs), genetic generalized epilepsy (GGE), and non-acquired focal epilepsy (NAFE). We observed that compared to controls, individuals with any type of epilepsy carried an excess of ultra-rare, deleterious variants in constrained genes and in genes previously associated with epilepsy; we saw the strongest enrichment in individuals with DEEs and the least strong in individuals with NAFE. Moreover, we found that inhibitory GABA(A) receptor genes were enriched for missense variants across all three classes of epilepsy, whereas no enrichment was seen in excitatory receptor genes. The larger gene groups for the GABAergic pathway or cation channels also showed a significant mutational burden in DEEs and GGE. Although no single gene surpassed exome-wide significance among individuals with GGE or NAFE, highly constrained genes and genes encoding ion channels were among the lead associations; such genes included CACNAIG, EEF1A2, and GABRG2 for GGE and LGI1, TRIM3, and GABRG2 for NAFE. Our study, the largest epilepsy WES study to date, confirms a convergence in the genetics of severe and less-severe epilepsies associated with ultra-rare coding variation, and it highlights a ubiquitous role for GABAergic inhibition in epilepsy etiology.Peer reviewe

    Polygenic burden in focal and generalized epilepsies

    Get PDF
    Rare genetic variants can cause epilepsy, and genetic testing has been widely adopted for severe, paediatric-onset epilepsies. The phenotypic consequences of common genetic risk burden for epilepsies and their potential future clinical applications have not yet been determined. Using polygenic risk scores (PRS) from a European-ancestry genome-wide association study in generalized and focal epilepsy, we quantified common genetic burden in patients with generalized epilepsy (GE-PRS) or focal epilepsy (FE-PRS) from two independent non-Finnish European cohorts (Epi25 Consortium, n = 5705; Cleveland Clinic Epilepsy Center, n = 620; both compared to 20 435 controls). One Finnish-ancestry population isolate (Finnish-ancestry Epi25, n = 449; compared to 1559 controls), two European-ancestry biobanks (UK Biobank, n = 383 656; Vanderbilt biorepository, n = 49 494), and one Japaneseancestry biobank (BioBank Japan, n = 168 680) were used for additional replications. Across 8386 patients with epilepsy and 622 212 population controls, we found and replicated significantly higher GE-PRS in patients with generalized epilepsy of European-ancestry compared to patients with focal epilepsy (Epi25: P = 1.64 710-15; Cleveland: P = 2.85 710-4; Finnish-ancestry Epi25: P = 1.80 710-4) or population controls (Epi25: P = 2.35 710-70; Cleveland: P = 1.43 710-7; Finnish-ancestry Epi25: P = 3.11 710-4; UK Biobank and Vanderbilt biorepository meta-analysis: P = 7.99 710-4). FE-PRS were significantly higher in patients with focal epilepsy compared to controls in the non-Finnish, non-biobank cohorts (Epi25: P = 5.74 710-19; Cleveland: P = 1.69 710-6). European ancestry-derived PRS did not predict generalized epilepsy or focal epilepsy in Japanese-ancestry individuals. Finally, we observed a significant 4.6-fold and a 4.5-fold enrichment of patients with generalized epilepsy compared to controls in the top 0.5% highest GE-PRS of the two non-Finnish European cohorts (Epi25: P = 2.60 710-15; Cleveland: P = 1.39 710-2). We conclude that common variant risk associated with epilepsy is significantly enriched in multiple cohorts of patients with epilepsy compared to controls-in particular for generalized epilepsy. As sample sizes and PRS accuracy continue to increase with further common variant discovery, PRS could complement established clinical biomarkers and augment genetic testing for patient classification, comorbidity research, and potentially targeted treatment

    Sub-genic intolerance, ClinVar, and the epilepsies: A whole-exome sequencing study of 29,165 individuals

    Get PDF
    Both mild and severe epilepsies are influenced by variants in the same genes, yet an explanation for the resulting phenotypic variation is unknown. As part of the ongoing Epi25 Collaboration, we performed a whole-exome sequencing analysis of 13,487 epilepsy-affected individuals and 15,678 control individuals. While prior Epi25 studies focused on gene-based collapsing analyses, we asked how the pattern of variation within genes differs by epilepsy type. Specifically, we compared the genetic architectures of severe developmental and epileptic encephalopathies (DEEs) and two generally less severe epilepsies, genetic generalized epilepsy and non-acquired focal epilepsy (NAFE). Our gene-based rare variant collapsing analysis used geographic ancestry-based clustering that included broader ancestries than previously possible and revealed novel associations. Using the missense intolerance ratio (MTR), we found that variants in DEE-affected individuals are in significantly more intolerant genic sub-regions than those in NAFE-affected individuals. Only previously reported pathogenic variants absent in available genomic datasets showed a significant burden in epilepsy-affected individuals compared with control individuals, and the ultra-rare pathogenic variants associated with DEE were located in more intolerant genic sub-regions than variants associated with non-DEE epilepsies. MTR filtering improved the yield of ultra-rare pathogenic variants in affected individuals compared with control individuals. Finally, analysis of variants in genes without a disease association revealed a significant burden of loss-of-function variants in the genes most intolerant to such variation, indicating additional epilepsy-risk genes yet to be discovered. Taken together, our study suggests that genic and sub-genic intolerance are critical characteristics for interpreting the effects of variation in genes that influence epilepsy

    Fiscal policy and ecological sustainability: a post-Keynesian perspective

    Get PDF
    Fiscal policy has a strong role to play in the transition to an ecologically sustainable economy. This paper critically discusses the way that green fiscal policy has been analysed in both conventional and post-Keynesian approaches. It then uses a recently developed post-Keynesian ecological macroeconomic model in order to provide a comparative evaluation of three different types of green fiscal policy: carbon taxes, green subsidies and green public investment. We show that (i) carbon taxes reduce global warming but increase financial risks due to their adverse effects on the profitability of firms and credit availability; (ii) green subsidies and green public investment improve ecological efficiency, but their positive environmental impact is partially offset by their macroeconomic rebound effects; and (iii) a green fiscal policy mix derives better outcomes than isolated policies. Directions for future heterodox macroeconomic research on the links between fiscal policy and ecological sustainability are suggested
    • …
    corecore