4,019 research outputs found
Sneutrino Dark Matter: Symmetry Protection and Cosmic Ray Anomalies
We present an R-parity conserving model of sneutrino dark matter within a
Higgs-philic U(1)' extension of the minimal supersymmetric standard model. In
this theory, the mu parameter and light Dirac neutrino masses are generated
naturally upon the breaking of the U(1)' gauge symmetry. The leptonic and
hadronic decays of sneutrinos in this model, taken to be the lightest and
next-to-lightest superpartners, allow for a natural fit to the recent results
reported by the PAMELA experiment.Comment: Revised to match the published version; 11 pages (2 column format), 1
table, 6 figures, to appear in PR
Signatures for doubly-charged Higgsinos at colliders
Several supersymmetric models with extended gauge structures predict light
doubly-charged Higgsinos. Their distinctive signature at the large hadron
collider is highlighted by studying their production and decay characteristics.Comment: 3 pages, 4 figures, Latex. Submitted for SUSY 2008 proceeding
Photovoltaic nanocrystal scintillators hybridized on Si solar cells for enhanced conversion efficiency in UV
Cataloged from PDF version of article.We propose and demonstrate semiconductor nanocrystal based photovoltaic scintillators integrated on solar cells to enhance photovoltaic device parameters including spectral responsivity, open circuit voltage, short circuit current, fill factor, and solar conversion efficiency in the ultraviolet. Hybridizing (CdSe) ZnS core-shell quantum dots of 2.4 nm in diameter on multi-crystalline Si solar cells for the first time, we show that the solar conversion efficiency is enhanced 2 folds under white light illumination similar to the solar spectrum. Such nanocrystal scintillators provide the ability to extend the photovoltaic activity towards UV. (c) 2008 Optical Society of America
Motion capture and human pose reconstruction from a single-view video sequence
Cataloged from PDF version of article.We propose a framework to reconstruct the 3D pose of a human for animation from a sequence of single-view video frames. The framework for pose construction starts with background estimation and the performer's silhouette is extracted using image subtraction for each frame. Then the body silhouettes are automatically labeled using a model-based approach. Finally, the 3D pose is constructed from the labeled human silhouette by assuming orthographic projection. The proposed approach does not require camera calibration. It assumes that the input video has a static background, it has no significant perspective effects, and the performer is in an upright position. The proposed approach requires minimal user interaction. (C) 2013 Elsevier Inc. All rights reserved
Quantum efficiency enhancement in film by making nanoparticles of polyfluorene
Cataloged from PDF version of article.We report on conjugated polymer nanoparticles of polyfluorene that were formed to exhibit higher fluorescence quantum efficiency in film (68%) and reduce undesired emission peak wavelength shifts in film (by 20 nm), compared to the solid-state polymer thin film made directly out of the same polymer solution without forming nanoparticles. Using the facile reprecipitation method, solutions of poly[9,9-dihexyl-9H-fluorene] in THF were added at different volume ratios to obtain different size distributions of nanoparticle dispersions in water. This allowed us to control the sizedependent optical emission of our polyfluorene nanoparticles. Such organic nanoparticles hold great promise for use as efficient emitters in optoelectronic device applications. (C) 2008 Optical Society of America
Non-radiative resonance energy transfer in bi-polymer nanoparticles of fluorescent conjugated polymers
Cataloged from PDF version of article.his work demonstrates the comparative studies of non-radiative resonance energy transfer in bi-polymer nanoparticles based on fluorescent conjugated polymers. For this purpose, poly[(9,9-dihexylfluorene) (PF) as a donor (D) and poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) as an acceptor (A) have been utilized, from which four different bi-polymer nanoparticle systems are designed and synthesized. Both, steady-state fluorescence spectra and time-resolved fluorescence measurements indicate varying energy transfer efficiencies from the host polymer PF to the acceptor polymer MEH-PPV depending on the D-A distances and structural properties of the nanoparticles. The first approach involves the preparation of PF and MEH-PPV nanoparticles separately and mixing them at a certain ratio. In the second approach, first PF and MEH-PPV solutions are mixed prior to nanoparticle formation and then nanoparticles are prepared from the mixture. Third and fourth approaches involve the sequential nanoparticle preparation. In the former, nanoparticles are prepared to have PF as a core and MEH-PPV as a shell. The latter is the reverse of the third in which the core is MEH-PPV and the shell is PF. The highest energy transfer efficiency recorded to be 35% is obtained from the last system, in which a PF layer is sequentially formed on MEH-PPV NPs. © 2010 Optical Society of America
Localized plasmon-engineered spontaneous emission of CdSe/ZnS nanocrystals closely-packed in the proximity of Ag nanoisland films for controlling emission linewidth, peak, and intensity
Cataloged from PDF version of article.Using metallic nanoislands, we demonstrate the localized plasmonic control and modification of the spontaneous emission from closely-packed nanocrystal emitters, leading to significant changes in their collective emission characteristics tuned spectrally and spatially by plasmon coupling. Using randomly-distributed silver nanoislands, we show that the emission linewidth of proximal CdSe/ZnS core-shell quantum dots is reduced by 22% and their peak emission wavelength is shifted by 14nm, while their ensemble photoluminescence is enhanced via radiative energy transfer by 21.6 and 15.1 times compared to the control groups of CdSe/ZnS nanocrystals with identical nano-silver but no dielectric spacer and the same nanocrystals alone, respectively. (C) 2007 Optical Society of America
Green/Yellow Solid State Lighting via Radiative and Nonradiative Energy Transfer Involving Colloidal Semiconductor Nanocrystals
Cataloged from PDF version of article.LEDs made of In(x)Ga(1-x)N and (Al(x)Ga(1-x))(1-y)In(y)P suffer from significantly reduced quantum efficiency and luminous efficiency in the green/yellow spectral ranges. To address these problems, we present the design, growth, fabrication, hybridization, and characterization of proof-of-concept green/yellow hybrid LEDs that utilize radiative and nonradiative [Forster resonance energy transfer (FRET)] energy transfers in their colloidal semiconductor nanocrystals (NCs) integrated on near-UV LEDs. In our first NC-LED, we realize a color-converted LED that incorporate green-emitting CdSe/ZnS core/shell NCs (lambda(PL) = 548 nm) on near-UV InGaN/GaN LEDs (lambda(EL) = 379 nm). In our second NC-LED, we implement a color-converted FRET-enhanced LED. For that, we hybridize a custom-design assembly of cyan-and green-emitting CdSe/ZnS core/shell NCs (lambda(PL) = 490 and 548 nm) on near-UV LEDs. Using a proper mixture of differently sized NCs, we obtain a quantum efficiency enhancement of 9% by recycling trapped excitons via FRET. With FRET-NC-LEDs, we show that it is possible to obtain a luminous efficacy of 425 lm/W(opt) and a luminous efficiency of 94 lm/W, using near-UV LEDs with a 40% external quantum efficiency. Finally, we investigate FRET-converted light-emitting structures that use nonradiative energy transfer directly from epitaxial quantum wells to colloidal NCs. These proof-of-concept demonstrations show that FRET-based NC-LEDs hold promise for efficient solid-state lighting in green/yellow
White emitting polyfluorene functionalized with azide hybridized on near-UV light emitting diode for high color rendering index
Cataloged from PDF version of article.We develop and demonstrate high-quality white light generation that relies on the use of a single-type simple conjugated polymer of polyfluorene functionalized with azide groups (PFA) integrated on a near-UV LED platform. The high-quality white emission from the polyfluorene is achieved by using the azide functionalization to facilitate cross-linking intentionally when cast into solid-state form. Hybridized on n-UV InGaN/GaN LED at 378 nm, the PFA emitters collectively generate a very broad down-converting photoluminescence at longer wavelengths across the entirety of the visible spectrum, yielding high color rendering indices up to 91. (c) 2008 Optical Society of America
- …
