
Digital Signal Processing 23 (2013) 1441–1450

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Bilkent University Institutional Repository
Contents lists available at SciVerse ScienceDirect

Digital Signal Processing

www.elsevier.com/locate/dsp

Motion capture and human pose reconstruction from a single-view
video sequence

Uğur Güdükbay ∗, İbrahim Demir, Yiğithan Dedeoğlu

Department of Computer Engineering, Bilkent University, 06800 Ankara, Turkey

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 19 July 2013

Keywords:
Motion capture
Human pose reconstruction
Single camera
Uncalibrated camera
Computer vision
Animation

We propose a framework to reconstruct the 3D pose of a human for animation from a sequence of single-
view video frames. The framework for pose construction starts with background estimation and the
performer’s silhouette is extracted using image subtraction for each frame. Then the body silhouettes are
automatically labeled using a model-based approach. Finally, the 3D pose is constructed from the labeled
human silhouette by assuming orthographic projection. The proposed approach does not require camera
calibration. It assumes that the input video has a static background, it has no significant perspective
effects, and the performer is in an upright position. The proposed approach requires minimal user
interaction.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Human pose reconstruction is a significant research problem
since it can be used in various applications. Motion capture and
motion synthesis are expensive and time consuming tasks for ar-
ticulated figures, such as humans. Human pose estimation based
on computer vision principles is an inexpensive and widely ap-
plicable approach. In computer vision literature, the term human
motion capture is usually used in connection with large-scale body
analysis ignoring the fingers, hands and the facial muscles, which
is also the case in our work. The motion capture problem we try
to solve can be defined as follows: given a single stream of video
frames of a performer, compute a 3D skeletal representation of the
motion of sufficient quality to be useful for animation. The ani-
mation generation is an application of motion capture where the
required accuracy is not as high as in some other applications, such
as medicine [1].

In this study, we propose a model-based framework to recon-
struct the 3D pose of a human for animation from a sequence of
video frames obtained from a single view. The proposed frame-
work for pose reconstruction starts with background estimation.
Once the background is estimated, the body silhouette is extracted
for each frame using image subtraction. Then, 2D body segments
are automatically labeled on the human body silhouette using a
model-based approach. Finally, the 3D pose is constructed from
the labeled human silhouette by assuming orthographic projec-
tion. The approach proposed in this work does not require camera

* Corresponding author. Fax: +90 312 266 4047.
E-mail addresses: gudukbay@cs.bilkent.edu.tr (U. Güdükbay),

ibrahimdemir.mail@gmail.com (İ. Demir), yigithan@cs.bilkent.edu.tr (Y. Dedeoğlu).
1051-2004/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.dsp.2013.06.008
calibration and it uses a video sequence obtained from a single
camera. The proposed framework assumes that the input video
has a static background, it has no significant perspective effects,
and the performer is in an upright position. Our approach com-
putes joint locations automatically for the unoccluded parts and
requires minimal user interaction for the specification of foreshort-
ening directions, the orientation of the body, and joint locations in
the highly occluded parts. We tested the proposed framework on
various video sequences and obtained reasonable reconstructions
of the human figure motion.

The proposed framework can help the professional animators
produce an initial version of the motion using real motion data
capture from a single-view video sequence, which then can be re-
fined further. It can also enable animators to use motion capture
data to construct motion libraries from public resources.

The remainder of this paper is organized as follows. Section 2
gives an overview of the problem and the related work. In the next
section we propose our framework for human motion capture from
a video sequence obtained from a single camera and animation
using the captured motion data. Experimental results are discussed
in Section 4 and finally we conclude the paper with Section 5.

2. Overview and related work

There are two main motion control techniques for animating
articulated figures: kinematics and dynamics. Kinematics methods
use time-based joint rotation values to control the animation while
dynamics methods use force-based simulation of movements [2].
Creating data for these techniques can be done manually by tal-
ented animators or can be captured automatically by different
types of devices [3,4].

https://core.ac.uk/display/52923781?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.dsp.2013.06.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dsp
mailto:gudukbay@cs.bilkent.edu.tr
mailto:ibrahimdemir.mail@gmail.com
mailto:yigithan@cs.bilkent.edu.tr
http://dx.doi.org/10.1016/j.dsp.2013.06.008
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.dsp.2013.06.008&domain=pdf


1442 U. Güdükbay et al. / Digital Signal Processing 23 (2013) 1441–1450
Motion capture is an effective way of creating the motion data
for an animation. It provides realistic motion parameters and per-
mits an actor and a director to work together to create a desired
pose, which may be difficult to describe specifically enough to have
an animator recreate manually [1]. There are various application
areas for motion capture techniques such as virtual reality, smart
surveillance systems, advanced user interfaces and motion analysis
and synthesis [5,6].

Producing high-quality animation is a challenging task. Capture
systems that overcome these challenges have previously required
expensive specialized equipment. Computer vision techniques can
be used as a replacement to obtain animation data in an easier
and cheaper way. Human motion capture systems generate data
that represents measured human movement, based on different
technologies. According to the technology used, currently available
human motion capture systems can be classified as either non-
vision based, vision based with markers, or vision based without
markers. Ideally, the capture of motion data should be inexpensive
and easily available. Using a single standard video camera is an at-
tractive way of providing these features. It offers the lowest cost,
simplified setup, and the potential use of legacy sources such as
films [1]. The method proposed in this paper is vision based and
does not require additional equipment, such as markers. Because a
camera can have a resolution measured in megapixels, such vision-
based techniques require intensive computational power [7].

As a commonly used framework, 2D motion tracking is only
concerned with the human movement in an image plane, although
sometimes people intend to project a 3D structure into its image
plane for processing purposes. This approach can be cataloged with
and without explicit shape models [8]. The creation of motion cap-
ture data from a single video stream seems like a plausible idea.
People are able to watch a video and understand the motion, but
clearly, computing human motion parameters from a single-view
video sequence is a challenging task [1].

Felzenszwalb and Huttenlocher present a framework for part-
based modeling and recognition of objects in [9]. In one of their
experiments they try to find articulated human body in images.
Their approach use pictorial structures to find instances of objects
in images and requires manual labeling of joints for learning. This
framework is not restricted to human body and can be used for
other articulated objects.

Ramanan and Forsyth describe a system that can annotate a
video sequence in [10]. Their system works by tracking people
in 2D. The success of their tracking algorithm depends on segmen-
tation and clothing of the subject.

Rosales et al. introduce a framework for 3D articulated pose
recovery, given multiple uncalibrated views in [11]. A statistical in-
ference method known as Specialized Mapping Architecture (SMA)
is used. 2D joint locations across frames and views are provided by
the SMA. The SMA requires training data to be able to provide 2D
joint locations. The approach used in this paper requires multiple
camera input.

Mori and Malik present a method to estimate the human body
configuration in images [12]. In their work, 2D joint locations
are found automatically by shape context matching technique.
2D exemplar views are stored and locations of joints are man-
ually marked and labeled in these views to be used for future.
The tested image is matched to the stored views using the shape
context matching technique. The technique is based on represent-
ing a shape by a set of points from internal or external contours,
found using an edge detector. If sufficient similarity is shown by
shape context matching technique to a stored view, the stored joint
points are transferred to the test image. Given the joint location,
the 3D body configuration and pose are estimated using the Tay-
lor’s algorithm. Since their approach requires user intervention for
manual labeling, it is difficult to use for videos.
Kakadiaris and Metaxas [13] describe a method for 3D model-
based tracking and shape estimation of human body parts using
images from multiview cameras in orthogonal configurations. They
later extended their approach for estimation of human movement
from multiview video sequences and create animation sequences
accordingly. Their approach works well for the case of tracking up-
per body extremities [14].

Shakhnarovich et al. present an algorithm that learns a set of
hash functions that efficiently index examples in a way relevant
to a particular estimation task in [15]. Their algorithm requires
training and is tested for human upper body images with synthet-
ically created data. Their method fails on some samples but for the
most of the time it gives accurate results. Their approach is fast
for learning phase when compared to similar methods but their
experiment does not entirely cover 3D pose recovery.

Ren et al. present a method that uses example based approach
for finding 3D body configuration in [16]. Multiple cameras are
used in their approach. Domain specific database is created for
three views and tested images are matched to the stored images.
The matching process uses discriminative local features that are
computed on the silhouette images.

Bregler and Malik [17] describe a vision-based motion capture
technique that can recover articulated human body configurations
in complex single-view video sequences. They use the product of
exponential maps and twist motions for visual tracking, and inte-
grate it for differential motion estimation. Ye et al. [18] describe
an accurate 3D human pose estimation method for depth map se-
quences obtained using Microsoft Kinect® (Kinect is a registered
trademark of Microsoft Co.). Wei and Chai [19] describe a video-
based motion modeling technique for generating physically realis-
tic human motion from uncalibrated monocular video sequences.
They employ physics, contact constraints, and 2D image measure-
ments to reconstruct human body poses and other physical quan-
tities such as torques and forces, to reconstruct physically realistic
motions. Vondrak et al. [20] propose a motion human motion esti-
mation method for monocular videos employing a biped controller
with a balance feedback mechanism for encoding motion control
as a sequence of simple control tasks. They demonstrate their ap-
proach for walking, jumping, and gymnastics.

There are notable studies for markerless motion capture using
multiple view video sequences. Ballan and Cortelazzo [21] pro-
pose a markerless motion capture of skinned models using optical
flow and silhouette information using a four camera setup. They
transfer the reconstructed motion to a synthetic human model and
animate it using the reconstructed motion. Gall et al. [22] pro-
pose a method for capturing the performance of a human or an
animal from a multi-view video sequence. Michoud et al. [23] pro-
pose an extended shape-from-silhouette algorithm to reconstruct
the motion of a human model in real-time from three calibrated
Webcams. Gorelick et al. [24] represent actions as space–time
shapes and detect actions of human figures accurately in single-
view walking and dancing sequences. Ofli et al. [25] describe a
framework for unsupervised video analysis of dance performances
from multiview video recordings and animate a virtual 3D char-
acter accordingly. They model each dance figure using a set of
Hidden Markov Models.

Our approach for constructing the 3D pose is close to the ap-
proach defined in [26], but in our approach the necessary user
interaction is significantly reduced. In order to construct the 3D
pose, the joint coordinates of the human figure are needed. Unlike
Taylor’s approach, which gets the joint correspondences from the
user, our approach computes these points automatically. In Taylor’s
work, the motions of multiple human figures can be captured be-
cause the joint correspondences for all of them can be specified
manually whereas our framework works for a single human figure
in video.



U. Güdükbay et al. / Digital Signal Processing 23 (2013) 1441–1450 1443
Fig. 1. The proposed framework for human motion capture from a single-view video sequence and animation using the motion capture data.
3. Motion capture and animation system

Capturing human motion parameters has various challenging
problems. Thus, the solution for such a problem requires various
methods and algorithms. In this section we give an overview of
our framework and the details of each stage.

The proposed framework finds the posture of a human using
the joint correspondences calculated automatically from the image
and the depth direction of each body segment, which is provided
by the user using the mouse. In [26], the joint correspondences
are provided by the user in addition to the depth direction. Our
aim is to use image processing, computer vision algorithms, and
computer graphics techniques to extract human motion parame-
ters (namely body postures) with minimal user effort. After the
joint angles are calculated, the remaining information needed to
construct a 3D pose is the depth information (inward or outward)
of each body part, which rarely changes during a video sequence.
The user only has to interact whenever a body segment changes
its depth direction.

The proposed framework for human motion capture and anima-
tion is shown in Fig. 1. For capturing the 3D pose from the given
image sequence, the first stage estimates the background of the
video scene. Then, we find the silhouette of the performer by sub-
tracting the estimated background from each frame. The extracted
silhouette of the performer is given as input to the 2D pose ex-
tractor. The 2D pose extractor finds the joint coordinates of the
performer on the image by using a model-based approach. A 2D
stick human model (see Fig. 2) is fitted onto the silhouette. In this
way, the joint coordinates of the performer are matched to the
joint coordinates of the 2D stick human model. The joint coordi-
nates of the 2D stick model will be given as input to the 3D pose
estimator. The 3D pose estimator computes the 3D joint configura-
tions from the 2D joint coordinates and the depth information of
the human model for each body part. Finally, the 3D human model
is animated based on the 3D joint configurations computed from
the video sequence [27,28]. We use forward kinematics to gen-
erate the human posture according to the calculated joint angles.
Forward kinematics calculates the positions and orientations of the
limbs and the end effectors of the human model starting from the
root of the joint hierarchy towards the end effectors (cf. Fig. 2).

3.1. Human model

The skeleton can be represented as a collection of simple rigid
objects connected by joints, which are arranged in a hierarchical
manner. These models, called articulated bodies, can have various
degrees of articulation. The number and the hierarchy of joints and
limbs and the degrees of freedom (DOF) of the joints determine
the complexity of the model. The DOF of a joint is the independent
position variable that is necessary to specify the state of a joint.
The joints can rotate in one, two, or three orthogonal directions.
The number of orthogonal directions determines the DOF of a joint.
A human skeleton may have many DOFs. However, as the number
Fig. 2. The human body model used in the implementation.

of DOFs increases, the methodology used for controlling the joints
becomes more complex.

For the sake of our model-based framework, we have to think
about tradeoff between the accuracy of the representation and the
number of parameters for the model that need to be estimated.
In our work, we are interested in large human body movements.
Hands or facial expressions are not considered. To reduce the com-
putational complexity of the model we use a simple 3D articulated
human model to capture the motion. Our articulated human model
consists of 10 cylindrical parts representing head, torso, right up-
per leg, right lower leg, left upper leg, left lower leg, right upper
arm, right lower arm, left upper arm, and left lower arm (see
Fig. 2). Each cylindrical part has two parameters: radius and length.
For each cylindrical part there are up to three rotation parameters:
θX , θY , and θZ . In total, there are 23 DOFs for the human model:
3 DOFs for the global positioning of the human body, 1 DOF for the
head, 3 DOFs for the torso, 2 DOFs for the right upper leg, 2 DOFs
for the right lower leg, 2 DOFs for the left upper leg, 2 DOFs for
the left lower leg, 2 DOFs for the right upper arm, 2 DOFs for the
right lower arm, 2 DOFs for the left upper arm, 2 DOFs for the left
lower arm.

3.2. Background estimation and silhouette extraction

We need to estimate the background of the scene to extract
the silhouette of the performer from the video sequence. We make
use of the background subtraction method described by Collins
et al. [29]. We analyze a few frames to find the regions that do
not change. The silhouette is the main feature extracted from the
video frames and used in our framework. Our 2D pose extractor



1444 U. Güdükbay et al. / Digital Signal Processing 23 (2013) 1441–1450
Table 1
Body part ratios and joint limits: (a) the ratios of the lengths of different parts to the length of the human model;
(b) the ratios of the radii of different parts to the length of the human model; (c) the joint limits in the human model.

(a) (b) (c)

Body part Ratio Body part Ratio Joint Start/End limit (degrees)

Height 175/175 Head 20/175 Neck 45/135
Head 25/175 Torso 40/175 Waist 45/135
Torso 52/175 Upper arm 10/175 Right hip 240/300
Upper arm 25/175 Lower arm 10/175 Left hip 240/300
Lower arm 35/175 Upper leg 20/175
Upper leg 46/175 Lower leg 20/175
Lower leg 52/175
takes the silhouette of the performer as input and processes the
silhouette to find 2D joint coordinates of the performer.

We detect the silhouette on a frame as the difference between
the frame and the background. We apply the threshold value to
decide whether a pixel belongs to the silhouette or the back-
ground. If the absolute value of the difference between the pixel
of the frame and the background pixel is greater than the specified
threshold, then the pixel is taken as a silhouette pixel, otherwise
the pixel is regarded as a background pixel. Our method of esti-
mating the background may not be suitable in video clips where
there are dark shadows or too much visual noise.

3.3. 2D pose extraction

The aim of 2D pose extraction is to find the joint coordinates
of the performer by using the human silhouette. We extract joint
coordinates of a human actor by using a model-based technique.
We model the human as an assembly of cylinders. We match the
silhouette with the human model iteratively. After fitting the hu-
man model onto the silhouette, we can use the joint coordinates
of the human model as the joint coordinates of the performer.
In our method the performer is assumed to be in an upright posi-
tion.

During 2D pose extraction, we do not know whether a leg is
a left leg (arm) or right leg (arm). When we talk about 2D pose
extraction we use “left leg” to mean the leg that is on the left of
the image. The distinction between left and right is actually done
during 3D pose estimation. For 2D pose extraction we have to be
sure that the segments on the left of the image are identified as
left and the segments on the right of the image are identified as
right.

The process of finding the 2D pose starts by detecting the torso
location. We locate the y coordinate of the torso from the relative
ratios shown in Table 1. We take the horizontal middle point of the
silhouette as the x coordinate of the torso. Then we find how much
the torso is rotated around the normal axis of the image plane us-
ing Algorithm 1, as shown in Fig. 3(a). Then we detect the head
rotation using Algorithm 1. We analyze the contour of the silhou-
ette using Algorithm 2 to find how much the lower left leg angle,
lower right leg angle, upper left arm angle, upper right arm angle,
lower left arm angle, and lower right arm angle are rotated around
the normal axis of the image plane. Then, we find the rotation an-
gle of the upper left leg and the upper right leg by Algorithm 1,
as shown in Figs. 3(b) and 3(c). After finding each rotation angle
we find the foreshortening of each segment by using Algorithm 6.
The methods for finding the foreshortening of the upper arm and
the torso are shown in Figs. 3(e) and 3(d), respectively.

3.3.1. Finding orientation of body parts
Algorithm 1 determines how much one or more body seg-

ments is rotated around the normal axis of the image. The tech-
nique used in Algorithm 1 is similar to the method used in [30].
Before going further, we have to define the similarity between two
images.

We measure similarity between two images I1 and I2 by an
operator S(I1, I2) as described in [30]. The similarity operator only
considers the area difference between the two shapes; i.e., the ra-
tio of the positive error p (representing the ratio of the number of
pixels in the silhouette but not in the human model to the total
number of pixels of the human model and the silhouette) and the
negative error n (representing the ratio of the number of pixels
in the human model but not in the silhouette to the total num-
ber of pixels of the human model and the silhouette) which are
calculated as

p = (I1 ∩ IC
2 )

(I1 ∪ I2)
, (1)

n = (I2 ∩ IC
1 )

(I1 ∪ I2)
, (2)

where IC denotes the complement of I . The similarity between the
two shapes I1 and I2 is calculated as

S(I1, I2) = e−p−n(1 − p). (3)

Algorithm 1 takes the fragment of the human silhouette that
contains the body segments to be searched as the input. The al-
gorithm also takes the lower and upper joint angle limits. The
lower and upper joint angle limits used in our implementation
are listed in Table 1. We divide the angle range specified by the
lower and upper limits to a number of intervals and we measure
how well the silhouette is covered by the segments for each in-
terval. We find the division (angle) that covers the silhouette best.
At each iteration we narrow the search interval by selecting the
next search interval for the joint angle as the division that gives
best covering result merged with its neighbor divisions since there
is a possibility the best angle can be in these divisions. We recur-
sively continue to narrow the search interval and when the search
interval is smaller than a threshold value the algorithm returns
the angle that corresponds to the best fit. Examples of the appli-
cation of this algorithm for the torso, the upper left leg, and the
upper right leg are shown in Figs. 3(a), 3(b), and 3(c), respec-
tively.

3.3.2. Contour analysis
This method is used to find how much the segments of the

body (lower left leg, upper right leg, upper left arm, lower left
arm, upper right arm, and lower right arm) are rotated around the
normal axis of the image plane. We use contour analysis to find
angles. We do not use Algorithm 1 for the arm segments because
of the high possibility of occlusion with other parts. For lower legs,
we cannot use Algorithm 1 because we have to first find the upper
legs. This is because we do not know the end points of the upper
legs. Trying to find the upper leg angle by using Algorithm 1 is also
not appropriate. Since upper legs might be occluded by clothes or



U. Güdükbay et al. / Digital Signal Processing 23 (2013) 1441–1450 1445
Fig. 3. Iterative estimation: (a) the torso orientation; (b) the upper left leg orientation; (c) the upper right leg orientation; (d) the foreshortening ratio of the torso; (e) the
foreshortening ratio of the upper arm.
adjacent to each other, it is difficult to find their joint angles. For
this reason, we use Algorithm 2, which is based on contour analy-
sis, for the lower legs. After finding the angle of the lower legs by
using Algorithm 2 we find upper leg angles by using Algorithm 1.
While finding the upper leg angle with Algorithm 1, we combine
the upper leg and the lower leg into a single unit, as shown in
Figs. 3(b) and 3(c). For some segments, Algorithm 1 gives better
results if the segment is combined with other segments. For ex-
ample, while we are determining the torso angle, the torso and the
head are also taken together as shown in Fig. 3(a). The head helps
to find the torso angle easily. By the same logic, since the lower leg
angles are found with the contour analysis method, knowing the
lower leg angle helps to find the upper leg angles easily, as shown
in Figs. 3(b) and 3(c).

The contours of the left arm, right arm and lower left leg and
lower right leg are extracted from the silhouette by traversing hor-
izontal scan lines over the silhouette. A curve is extracted for each
part for this purpose. For the lower left leg and the lower right
leg, we compute the joint angle from the curves, as shown in
Algorithm 2.

For the arms, we have to find two angles: one for the lower arm
and one for the upper arm. We extract two angles from the arm
curves by trying to find potential elbow corners on their point lists.
We use Algorithm 4 to find the elbows. Algorithm 4 tries some
points as if they are elbow corners and checks whether enough
angle difference exists for the upper and lower segments. If there
are more than one candidate points for the elbow, Algorithm 4
selects the elbow point that gives the largest angle difference be-
tween the upper arm and the lower arm. If an elbow is found,
the arm curve is divided into two pieces from the elbow and the
corresponding angle is computed for each segment like in lower
leg segments. If no elbow is detected then the angle is computed
from the whole arm curve and the lower and upper arm are as-
signed the same angle value that is computed from the whole arm
curve.

If the legs cross each other, as in Fig. 3(c), we cannot determine
which one is left and which one is right. We use Algorithm 5 to
detect whether the lower legs cross each other. If Algorithm 5 de-
cides that the legs cross each other, then we swap left and right
lower legs in the 2D pose extraction process.

Algorithm 5 goes over the lower parts of the silhouette, which
are lower and upper legs by following the scan lines and produces
a line segment list for the parts inside the silhouette. Then it ana-
lyzes the list of lines to decide whether lower legs cross each other.
If we observe that the line lists at the beginning of the lower sil-
houette parts start with one line and becomes two lines for the
remaining scan lines then we conclude that the legs cross each
other. In such a case, we swap the angle values of the left lower
leg with that of the right lower leg.

3.3.3. Finding the foreshortening ratio of a body part
We can find how much a segment is foreshortened based on

the orthographic projection. However, we cannot detect the direc-
tion of the foreshortening. We get foreshortening direction from
the user.

Algorithm 6 finds how much one or more body segments are
foreshortened. The algorithm does not care about the direction of
the foreshortening and finds the relative ratio, which is a measure



1446 U. Güdükbay et al. / Digital Signal Processing 23 (2013) 1441–1450
Fig. 4. The output of the implementation for the walking sequence. First row: sample images from the video sequence; second row: the performer’s silhouette extracted;
third row: the 3D human model pose obtained with the parameters extracted from the silhouette.
of the foreshortening angle. Algorithm 6 takes the fragment of
human silhouette that contains the body segment to be searched
as input. It tries to find the best ratio that covers the segment
being searched and starts with an initial target ratio in the inter-
val [0,1]. Then, it iteratively narrows the target interval and finds
the best ratio that covers the segment. At each iteration, the ra-
tio interval is divided into a specified number of intervals and we
measure how well the silhouette is covered by the segment for
each ratio value that corresponds to each division. We find the
division (ratio) that covers the silhouette best. We recursively con-
tinue to narrow the search interval and when the search interval
is smaller than a threshold ratio, the algorithm returns the ratio
that maximizes the fitting. Examples of the application of this al-
gorithm are shown in Figs. 3(d) and 3(e).

3.4. 3D pose estimation

This stage estimates the 3D pose of the performer on the video.
Given 2D joint coordinates and foreshortening direction of each
body segment, a 3D pose can be constructed using orthographic
projection. For the whole body, we take the orientation of the body
as input from the user. The body can be in one of the six ori-
entations: left, right, backward left, backward right, forward left,
forward right. We also use horizontal foreshortening of the torso
with the orientation of the body taken from the user to find how
much the performer is rotated around the y-axis of the image.
From the orientation, we also determine the left leg (arm) and the
right leg (arm). Finally, we use the 3D pose found for each key
frame to animate the character. We use linear interpolation to cal-
culate the intermediate poses of the human body.

3.4.1. Finding 3D point coordinates
In this section, we explain how to find a corresponding point in

an image according to orthographic projection as described in [26].
Let (X, Y , Z) be a point in the 3D world. The scaled orthographic
projection coordinates (u, v) of the point are given by

(
u
v

)
= s

(
1 0 0
0 1 0

)⎛
⎝ X

Y
Z

⎞
⎠ . (4)

Let (X1, Y1, Z1) and (X2, Y2, Z2) be the two end points of a line
with length l and the scaled orthographic projection coordinates of
these two points are (u1, v1) and (u2, v2), respectively. If the scale
factor s of the projection model is known, we can calculate the
relative depth of the line denoted by ∂ Z as shown in Eq. (5):
l2 = (X1 − X2)
2 + (Y1 − Y2)

2 + (Z1 − Z2)
2,

(u1 − u2) = s(X1 − X2),

(v1 − v2) = s(Y1 − Y2),

∂ Z = (Z1 − Z2), and

∂ Z = ±
√

l2 − ((u1 − u2)2 + (v1 − v2)2)

s2
. (5)

This analysis shows us how to compute the 3D correspondence
of a point in the image as a function of the scale parameter s.
In this work, we use the height of the human observed on the
image to compute the scale parameter s. We use the parameter s
found from the height and apply this parameter to all body parts
to find 3D joint coordinates. For the computed value of s, two
distinct solutions are possible since we do not know whether a
segment on the image is in the front or at the rear [31].

4. Experimental results

We tried our implementation on two videos obtained from pub-
lic resources. The first one shows a human walking [32] and the
second one shows dancing [33]. The walking sequence consists
of 82 frames and the dancing sequence consists of 200 frames.
The output of our algorithm on these two sequences is illus-
trated in Figs. 4 and 5. (The videos for walking and dancing mo-
tions generated by our implementation can be found in http://
www.cs.bilkent.edu.tr/~gudukbay/motion_capture.html.) The video
frame which our method is applied to and the extracted silhouette
from the video frame and the pose we constructed are depicted
in the figure. We created an animation for each video by us-
ing key-framing technique. For the dancing video, we applied our
method to 33 key-frames. For the walking video, we applied our
method to 17 key-frames. While selecting the key-frames, we pre-
ferred the ones with low occlusion in order to get better results.
We used linear interpolation to create intermediate frames. In both
the dancing and walking videos we needed user interaction in a
few frames to find the 2D joint coordinates because of high occlu-
sion. We implemented the proposed system on a PC platform with
Intel Celeron 2.70 GHz processor, 512 MB memory and Intel(R)
82852/82855 GM/GME graphics card, using Microsoft’s C# .NET
platform. It took nearly one second to find the 2D joint coordi-
nates of a human body from a single video frame. The video frame
size does not affect the performance significantly since we normal-
ize the silhouette to a fixed size.

http://www.cs.bilkent.edu.tr/~gudukbay/motion_capture.html
http://www.cs.bilkent.edu.tr/~gudukbay/motion_capture.html


U. Güdükbay et al. / Digital Signal Processing 23 (2013) 1441–1450 1447
Fig. 5. The output of the implementation for the dancing sequence. First row: sample images from the video sequence; second row: the performer’s silhouette extracted;
third row: the 3D human model pose obtained with the parameters extracted from the silhouette.
In our implementation, we find the 2D joint coordinates from
the images automatically and only require the user to enter the
foreshortening direction and the body orientation. Our implemen-
tation only needs the user input for parameters that rarely change
during a motion, so it requires minimal user intervention. In the
walking video, the orientation of the body does not change during
the whole video (82 frames). In the dancing video, the orientation
of the body changes 7 times along the 200 frames. For the interac-
tions required to specify the foreshortening direction, 52 changes
occurred in the 82 frames of the walking video and 44 changes
occurred in the 200 frames of the dancing video. In the danc-
ing video, 8 user inputs are needed and in the walking video
7 user inputs are needed for the highly occluded parts in a few
frames.

14 user inputs (joint coordinates) are needed for each video
keyframe using Taylor’s approach [26], which are determined au-
tomatically in our implementation.

If we use Taylor’s approach in the walking video, we need 17 ×
14 + 52 = 290 user inputs, where 17 is the number of keyframes
in the animation, 14 is the number of joint coordinates specified
for each frame, and 52 is the number of user interactions needed
for specifying the foreshortening directions. In contrast, with our
proposed work, 52 + 1 + 7 = 60 user inputs are needed. There are
52 user interactions needed for the foreshortening directions, one
user interaction needed for the orientation of the body and 7 user
interactions needed for highly occluded parts.

If we use Taylor’s approach in the dancing video, we need
33 × 14 + 44 = 506 user inputs, where 33 is the number of
keyframes in the animation, 14 is the number of user interac-
tions necessary for specifying the joint coordinates, and 44 is the
number of user interactions needed for specifying the foreshort-
ening directions. With our proposed framework, 44 + 7 + 8 = 59
user inputs are adequate. Forty-four user interactions are required
for specifying the foreshortening directions, 7 user interactions are
required for specifying the orientation of the body, and 7 user in-
teractions are required for specifying the joint angles of the highly
occluded segments.

5. Conclusion

This paper proposes a framework for constructing the 3D hu-
man pose from a video sequence obtained from a single view.
The proposed framework does not require camera calibration and
requires minimal user intervention. Videos taken from public re-
sources can be processed by the proposed framework, which
assumes the input video has a static background, it has no sig-
nificant perspective effects, and the performer is in an upright
position. The proposed framework uses orthographic projection.
By considering the foreshortening of the segments, the 3D pose
of the human in the video can be reconstructed under ortho-
graphic projection. In contrast, the method proposed in [26] re-
quires intensive user interaction; the user has to specify the joint
coordinates on the images and the foreshortening direction for
each segment. We calculate the joint coordinates automatically
from the video images and succeed in reducing the user inter-
action for pose construction to 12–21% as compared to Taylor’s
approach [26].

By using the 3D poses constructed, we produced animations of
human’s walking and dancing. An animator has to control both the
appearance and the movement of the characters. Since there are
many degrees of freedom to be controlled, controlling the move-
ment of characters is a difficult task that requires skill and labor.
For this reason, the animators usually begin their work by sketch-
ing the coarse version of the movements on key poses. They re-
work and refine the key poses to produce the final animation [34].
Our proposed framework can help the professional animators pro-
duce an initial version of the motion, which then can be refined
further.

One of the apparent results of our human pose estimation
framework is to enable non-skilled computer users to use com-
puter animation. The main advantage of our approach over the
other approaches is the ability to create a 3D pose that can be
easily mapped onto different characters, or modified to fit the
needs of a specific animation. Since our approach requires less
user interaction and has fewer constraints, it can be used to
construct motion libraries from public resources. Temporal co-
herence can be used to increase the performance of the frame-
work. Because when we are fitting the 2D model to the sil-
houette we search the body parts for angle ranges. With tem-
poral coherence searching range can be reduced. This cannot be
used for a video sequence without intervention. If occlusion oc-
curs for a body part then the estimated angle will not be ac-
curate so temporal coherence can not help after misestimated
frames.

Acknowledgment

We are grateful to Miss Kirsten Ward for proofreading and sug-
gestions.



1448 U. Güdükbay et al. / Digital Signal Processing 23 (2013) 1441–1450
Appendix A. Algorithms in pseudocode

This appendix provides Algorithms 1–6 used at different stages
of our framework in order to make the work reproducible.

S ← PartialSilhouetteContainingSegmentsToBeSearched;
startAngle ← startAngle;
endAngle ← endAngle;
numberOfDivision ← 8;
minimumStepAngle ← 1◦;
searchAngleInterval ← (endAngle - startAngle);
stepAngle ← (searchAngleInterval / numberOfDivision);
angleThatMaximizes ← (endAngle + startAngle)/2;
maximumSimilarity ← 0;
while searchAngleInterval > minimumStepAngle do

angForBegin ← angleThatMaximizes − searchAngleInterval/2;
if angForBegin < startAngle then

angForBegin ← startAngle;
end
angForEnd ← angleThatMaximizes + searchAngleInterval/2;
if angForEnd > endAngle then

angForEnd ← endAngle;
end
if stepAngle is 0 then

stepAngle ← minimumStepAngle;
end
angleForBodyPart ← angForBegin;
while angleForBodyPart � angForEnd do

currentModelPose ← DrawBodyPart();
similarityResult ← MeasureSimilarity(S,
currentModelPose);
if similarityResult > maximumSimilarity then

maximumSimilarity ← similarityResult;
angleThatMaximizes ← angleForBodyPart;

end
angleForBodyPart ← angleForBodyPart + StepAngle;

end
searchAngleInterval ← 2 × (searchAngleInterval /

numberOfDivision);
stepAngle ← 2 × (stepAngle / numberOfDivision);

end
return angleThatMaximizes

Algorithm 1: The algorithm to determine how much the given
segment(s) is rotated around the normal axis of the image.

S ← silhouette;
leftArmPoints ← GetLeftArmCurve(S);
rightArmPoints ← GetRightArmCurve(S);
leftLowerKneePoints ← GetLeftLowerKneeCurve(S);
rightLowerKneePoints ← GetRightLowerKneeCurve(S);
/* lla stands for LeftLowerArm */
/* lua stands for LeftUpperArm */
/* rla stands for RightLowerArm */
/* rua stands for RightUpperArm */
/* llk stands for LeftLowerKnee */
/* rlk stands for RightLowerKnee */
leftArmAngles ← FindArmAngles(leftArmPoints);
llaAngle ← leftArmAngles.Lower;
luaAngle ← leftArmAngles.Upper;
rightArmAngles ← FindArmAngles(rightArmPoints);
rlaAngle ← rightArmAngles.Lower;
ruaAngle ← rightArmAngles.Upper;
llkAngle ← FindAngle(leftLowerKneePoints);
rlkAngle ← FindAngle(rightLowerKneePoints);
llkLineList ← KneeScanLinesLeft(S);
rlkLineList ← KneeScanLinesRight(S);
if KneeCrossed(leftLowerKneeLineList, rightLowerKneeLineList) then

Swap(llkAngle, rlkAngle);
end
return llaAngle, luaAngle, rlaAngle, ruaAngle, llkAngle, rlkAngle

Algorithm 2: The algorithm to find the limb angles.
lowerArmAngle ← 0;
upperArmAngle ← 0;
elbowCornerIndex ← FindElbowCorner(armPointList);
if elbowCornerIndex is −1 then

angle ← FindAngle(armPointList);
lowerArmAngle ← angle; upperArmAngle ← angle;

else
startIndexUpper ← 0;
endIndexUpper ← elbowCornerIndex;
startIndexLower ← elbowCornerIndex;
endIndexLower ← ArmPointList.Length −1;
UpperArmPoints ← GetPoints(armPointList, startIndexUpper,

endIndexUpper);
LowerArmPoints ← GetPoints(armPointList, startIndexLower,

endIndexLower);
lowerArmAngle ← FindAngle(LowerArmPoints);
upperArmAngle ← FindAngle(UpperArmPoints);

end
return lowerArmAngle, upperArmAngle

Algorithm 3: The algorithm to find the arm angle.

minimumCornerDistance ← 4;
minimumCornerAngleDifference ← 10;
listOfPossibleCorners ← CreateEmptyList();
for i ← minimumCornerDistance to armPointList.Length −1 do

startIndexUpper ← 0;
endIndexUpper ← i;
startIndexLower ← i;
endIndexLower ← armPointList.Length −1;
upperArmPoints ← GetPoints(armPointList, startIndexUpper,

endIndexUpper);
lowerArmPoints ← GetPoints(armPointList, startIndexLower,

endIndexLower);
ArmAngles.Lower ← FindAngle(lowerArmPoints);
ArmAngles.Upper ← FindAngle(upperArmPoints);
cornerAngleDifference ← Absolute(ArmAngles.Upper −

ArmAngles.Lower);
if cornerAngleDifference � minimumCornerAngleDifference then

Add(listOfPossibleCorners, i, cornerAngleDifference);
end

end
cornerIndex ← −1;
if listOfPossibleCorners.Length � 0 then

cornerIndex ←
FindIndexOfMaxDifference(listOfPossibleCorners);

end
return cornerIndex

Algorithm 4: The algorithm to find the elbow corner.



U. Güdükbay et al. / Digital Signal Processing 23 (2013) 1441–1450 1449
/* lll stands for LeftLowerLeg */
/* rll stands for RightLowerLeg */
lllLineList ← LeftLowerLegLineList;
rllLineList ← RightLowerLegLineList;
OneKneeStarted ← false;
TwoKneeStarted ← false;
TwoKneeCrossed ← true;
for i ← 0 to lll.Length −1 do

if lllLineList[i] intersects rllLineList[i] then
if TwoKneeStarted then

TwoKneeCrossed ← false;
break;

end
OneKneeStarted ← true;

else
if OneKneeStarted then

TwoKneeStarted ← true;
else

TwoKneeCrossed ← false;
break;

end
end

end
if TwoKneeStarted is false then

TwoKneeCrossed ← false;
end
return TwoKneeCrossed

Algorithm 5: The algorithm to detect whether the lower legs
cross each other.

S ← partialSilhouetteContainingSegmentsToBeSearched;
beginPoint ← beginPoint;
endPoint ← beginPoint;
length ← DistanceOf(beginPoint, endPoint);
startRatio ← 0;
endRatio ← 1;
numberOfDivision ← 5;
minimumStepRatio ← 1/ length;
searchRatioInterval ← (endRatio − startRatio);
stepRatio ← (searchRatioInterval / numberOfDivision);
ratioThatMaximizes ← (endRatio + startRatio)/2;
maximumSimilarity ← 0;
while searchRatioInterval > minimumStepRatio do

ratioForBegin ← ratioThatMaximizes − searchRatioInterval/2;
if ratioForBegin < startRatio then

ratioForBegin ← startRatio;
end
ratioForEnd ← ratioThatMaximizes + searchRatioInterval/2;
if ratioForEnd > endRatio then

ratioForEnd ← endRatio;
end
ratioForBodyPart ← ratioForBegin;
while ratioForBodyPart � ratioForEnd do

currentModelPose ← DrawBodyPart();
similarityResult ← MeasureSimilarity(S, currentModelPose);
if similarityResult > maximumSimilarity then

maximumSimilarity ← similarityResult;
ratioThatMaximizes ← ratioForBodyPart;

end
ratioForBodyPart ← ratioForBodyPart + stepRatio;

end
searchRatioInterval ← 2 × (searchRatioInterval / numberOfDivision);
stepRatio ← 2 × (stepRatio / numberOfDivision);

end
return ratioThatMaximizes

Algorithm 6: The algorithm to find the absolute foreshorten-
ing.

Appendix B. Supplementary material

Supplementary material related to this article can be found on-
line at http://dx.doi.org/10.1016/j.dsp.2013.06.008.
References

[1] M. Gleicher, N. Ferrier, Evaluating video-based motion capture, in: Proceedings
of Computer Animation, 2002, pp. 75–80.

[2] S. Kiss, Computer animation for articulated 3D characters, Technical Report,
2002-45, CTIT Technical Report Series, 2002.

[3] D. Thalmann, Physical, behavioral, and sensor-based animation, in: Proceedings
of Graphicon, 1996, pp. 214–221.

[4] N.M. Thalmann, D. Thalmann, Computer animation, ACM Comput. Surv. 28 (1)
(1996) 161–163.

[5] F. Perales, Human motion analysis and synthesis using computer vision and
graphics techniques: State of art and applications, in: Proceedings of the 5th
World Multi-Conference on Systemics, Cybernetics and Informatics, 2001.

[6] T.B. Moeslund, E. Granum, A survey of computer vision-based human motion
capture, Comput. Vis. Image Underst. 81 (3) (2001) 231–268.

[7] S. Bryson, Virtual reality hardware, in: Implementing Virtual Reality, in: ACM
SIGGRAPH Course Notes, vol. 43, 1993, pp. 1.3.16–1.3.24.

[8] H. Zhou, H. Hu, A survey-human movement tracking and stroke rehabilita-
tion, Technical Report, No. 1744 - 8050, CSM-420, Department of Computer
Sciences, University of Essex, UK, 1996.

[9] P.F. Felzenszwalb, D.P. Huttenlocher, Pictorial structures for object recognition,
Int. J. Comput. Vis. 61 (1) (2005) 55–79.

[10] D. Ramanan, D.A. Forsyth, Automatic annotation of everyday movements, in:
S. Thrun, L. Saul, B. Schölkopf (Eds.), Advances in Neural Information Processing
Systems, vol. 16, MIT Press, Cambridge, MA, 2004.

[11] R. Rosales, M. Siddiqui, J. Alon, S. Sclaroff, Estimating 3D body pose using un-
calibrated cameras, in: Proceedings of IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, CVPR, vol. 1, 2001, pp. 821–827.

[12] G. Mori, J. Malik, Estimating human body configurations using shape context
matching, in: Proceedings of European Conference on Computer Vision, ECCV,
2002, pp. 666–680.

[13] I.A. Kakadiaris, D.N. Metaxas, Model-based estimation of 3D human motion
with occlusion based on active multi-viewpoint selection, in: Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition, CVPR, June 1996, pp. 81–87.

[14] I.A. Kakadiaris, D.N. Metaxas, Model-based estimation of 3D human motion,
IEEE Trans. Pattern Anal. Mach. Intell. 22 (12) (2000) 1453–1459.

[15] G. Shakhnarovich, P.A. Viola, T. Darrell, Fast pose estimation with parameter-
sensitive hashing, in: Proceedings of IEEE International Conference on Com-
puter Vision, ICCV, 2003, pp. 750–759.

[16] L. Ren, G. Shakhnarovich, J.K. Hodgins, H. Pfister, P.A. Viola, Learning silhou-
ette features for control of human motion, ACM Trans. Graph. 24 (4) (2005)
1303–1331.

[17] C. Bregler, J. Malik, Tracking people with twists and exponential maps, Techni-
cal Report, in: Proceedings of the IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, CVPR’98, June 1998, pp. 8–15.

[18] M. Ye, X. Wang, R. Yang, L. Ren, M. Pollefeys, Accurate 3D body pose estimation
from a single depth image, in: Proceedings of the IEEE International Conference
on Computer Vision, ICCV, November 2011, pp. 731–738.

[19] X. Wei, J. Chai, VideoMocap: Modeling physically realistic human motion from
monocular video sequences, in: Proceedings of SIGGRAPH’2010, ACM Trans.
Graph. 29 (4) (2010), article No. 42, 10 pp.

[20] M. Vondrak, L. Sigal, J. Hodgins, O. Jenkins, Video-based 3D motion cap-
ture through biped control, in: Proceedings of SIGGRAPH’2012, ACM Trans.
Graph. 31 (4) (July 2012), article No. 2712.

[21] L. Ballan, G.M. Cortelazzo, Marker-less motion capture of skinned models in
a four camera set-up using optical flow and silhouettes, in: Proceedings of
3DPVT’08 – the Fourth International Symposium on 3D Data Processing, Vi-
sualization and Transmission, Atlanta, GA, June 2008.

[22] J. Gall, C. Stoll, E. de Aguiar, C. Theobalt, B. Rosenhahn, H.-P. Seidel, Motion
capture using joint skeleton tracking and surface estimation, in: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, CVPR’09,
2009.

[23] B. Michoud, E. Guillou, S. Bouakaz, Real-time and markerless full-body human
motion capture, in: Groupe de Travail Animation et Simulation, GTAS’07, Lyon,
France, 2007.

[24] L. Gorelick, M. Blank, E. Shechtman, M. Irani, R. Basri, Actions as space–time
shapes, IEEE Trans. Pattern Anal. Mach. Intell. 29 (12) (2007) 2247–2253.

[25] F. Ofli, E. Erzin, Y. Yemez, A.M. Tekalp, C.E. Erdem, A.T. Erdem, T. Abaci, M.K.
Ozkan, Unsupervised dance figure analysis from video for dancing avatar ani-
mation, in: Proceedings of International Conference on Image Processing, ICIP,
San Diego, CA, October 2008, pp. 12–15.

[26] C.J. Taylor, Reconstruction of articulated objects from point correspondences
in a single uncalibrated image, Comput. Vis. Image Underst. 80 (3) (2000)
349–363.

[27] A. Memişoǧlu, U. Güdükbay, B. Özgüç, Motion control for realistic walking be-
havior using inverse kinematics, in: Proceedings of the 3DTV-CON’07: Capture,
Transmission, and Display of 3D Video, Kos, Greece, 2007.

[28] M.Ş. Yeşil, U. Güdükbay, Realistic rendering and animation of a multi-layered
human body model, in: Proceedings of the Tenth International Conference on
Information Visualization (IV), 2006, pp. 785–790.

http://dx.doi.org/10.1016/j.dsp.2013.06.008
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4D69636861656Cs1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4D69636861656Cs1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib537A696C617264s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib537A696C617264s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib44616E69656Cs1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib44616E69656Cs1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4E61646961s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4E61646961s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib506572616C6573s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib506572616C6573s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib506572616C6573s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib6D6F65736C756E643031737572766579s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib6D6F65736C756E643031737572766579s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib537475726D616Es1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib537475726D616Es1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4875697975s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4875697975s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4875697975s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib727731s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib727731s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib727732s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib727732s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib727732s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib727733s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib727733s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib727733s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib727734s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib727734s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib727734s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4B616B6131393936s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4B616B6131393936s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4B616B6131393936s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4B616B6131393936s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4B616B6132303030s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4B616B6132303030s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib727735s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib727735s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib727735s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib727736s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib727736s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib727736s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib427265676C657232303037s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib427265676C657232303037s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib427265676C657232303037s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib596532303131s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib596532303131s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib596532303131s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib57656932303130s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib57656932303130s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib57656932303130s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib566F6E6472616B32303132s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib566F6E6472616B32303132s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib566F6E6472616B32303132s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib42616C6C616E32303038s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib42616C6C616E32303038s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib42616C6C616E32303038s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib42616C6C616E32303038s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib47616C6C32303039s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib47616C6C32303039s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib47616C6C32303039s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib47616C6C32303039s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4D6963686F756432303037s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4D6963686F756432303037s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4D6963686F756432303037s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib476F72656C69636B32303037s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib476F72656C69636B32303037s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4F666C6932303038s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4F666C6932303038s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4F666C6932303038s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4F666C6932303038s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib5461796C6F72s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib5461796C6F72s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib5461796C6F72s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4D656D69736F676C75s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4D656D69736F676C75s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4D656D69736F676C75s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib596573696Cs1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib596573696Cs1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib596573696Cs1


1450 U. Güdükbay et al. / Digital Signal Processing 23 (2013) 1441–1450
[29] R. Collins, A. Lipton, T. Kanade, H. Fujiyoshi, D. Duggins, Y. Tsin, D. Tolliver, N.
Enomoto, O. Hasegawa, A system for video surveillance and monitoring: VSAM
final report, Technical Report, CMU-RI-TR-00-12, Robotics Institute, Carnegie
Mellon University, May 2000.

[30] C.-L. Huang, C.-Y. Chung, A real-time model-based human motion tracking and
analysis for human–computer interface systems, EURASIP J. Appl. Signal Pro-
cess. 11 (2004) 1648–1662.

[31] V. Mamania, A. Shaji, S. Chandran, Markerless motion capture from monocular
videos, in: Proceedings of Indian Conference on Computer Vision, Graphics and
Image Processing, ICVGIP, 2004, pp. 126–132.

[32] Lena Gorelick, Moshe Blank, Eli Shechtman, The walking video, http://www.
wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html, accessed at May 2013.

[33] Music Division, Library of Congress, The Dancing Video, An American Ballroom
Companion, Video Directory, http://rs6.loc.gov/ammem/dihtml/divideos.html,
accessed at May 2013.

[34] J. Davis, M. Agrawala, E. Chuang, Z. Popović, D. Salesin, A sketching interface
for articulated figure animation, in: Proceedings of the ACM SIGGRAPH/Euro-
graphics Symposium on Computer Animation, Aire-la-Ville, 2003, pp. 320–328.

Uğur Güdükbay received a BSc degree in computer engineering from
Middle East Technical University, Ankara, Turkey, in 1987. He received
his MSc and PhD degrees, both in computer engineering and informa-
tion science, from Bilkent University, Ankara, Turkey, in 1989 and 1994,
respectively. Then, he conducted research as a postdoctoral fellow at the
University of Pennsylvania, Human Modeling and Simulation Laboratory.
Currently, he is an associate professor at Bilkent University, Department of
Computer Engineering. His research interests include computer graphics
(especially human modeling and animation, crowd simulation, visualiza-
tion of complex graphical environments, virtual and augmented reality),
computer vision, and computational geometry. He is a senior member of
both IEEE and ACM.

İbrahim Demir received his BSc and MSc degrees in computer engi-
neering from Bilkent University, Ankara, Turkey, in 2003 and 2006, respec-
tively. Currently, he is a software engineer at Turkcell, İstanbul, Turkey. His
research interests include computer graphics and computer vision, includ-
ing processing motion capture data and motion reconstruction.

Yiğithan Dedeoğlu received his BSc and MSc degrees in computer en-
gineering, Ankara, Turkey, in 2002 and 2004, respectively. During his MSc
studies, he worked as a software development engineer at Synectics Ltd.
Research & Development Group at Bilkent University. Currently, he is a
software development engineer at Microsoft, USA. His research interests
include computer vision, including motion detection, object tracking and
classification, human action recognition, camera sabotage detection, and
fire and smoke detection.

http://refhub.elsevier.com/S1051-2004(13)00136-X/bib7673616Ds1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib7673616Ds1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib7673616Ds1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib7673616Ds1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4368756E675265616C54696D65s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4368756E675265616C54696D65s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4368756E675265616C54696D65s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4D616D616E6961s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4D616D616E6961s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4D616D616E6961s1
http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html
http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html
http://rs6.loc.gov/ammem/dihtml/divideos.html
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4461766973s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4461766973s1
http://refhub.elsevier.com/S1051-2004(13)00136-X/bib4461766973s1

	Motion capture and human pose reconstruction from a single-view video sequence
	1 Introduction
	2 Overview and related work
	3 Motion capture and animation system
	3.1 Human model
	3.2 Background estimation and silhouette extraction
	3.3 2D pose extraction
	3.3.1 Finding orientation of body parts
	3.3.2 Contour analysis
	3.3.3 Finding the foreshortening ratio of a body part

	3.4 3D pose estimation
	3.4.1 Finding 3D point coordinates


	4 Experimental results
	5 Conclusion
	Acknowledgment
	Appendix A Algorithms in pseudocode
	Appendix B Supplementary material
	References


