524 research outputs found

    Static quarks with improved statistical precision

    Full text link
    We present a numerical study for different discretisations of the static action, concerning cut-off effects and the growth of statistical errors with Euclidean time. An error reduction by an order of magnitude can be obtained with respect to the Eichten-Hill action, for time separations beyond 1.3 fm, keeping discretization errors small. The best actions lead to a big improvement on the precision of the quark mass Mb and F_Bs in the static approximation.Comment: 3 pages, 4 figures, Lattice2003(heavy

    Towards a precision computation of f_Bs in quenched QCD

    Full text link
    We present a computation of the decay constant f_Bs in quenched QCD. Our strategy is to combine new precise data from the static approximation with an interpolation of the decay constant around the charm quark mass region. This computation is the first step in demonstrating the feasability of a strategy for f_B in full QCD. The continuum limits in the static theory and at finite mass are taken separately and will be further improved.Comment: Lattice2003(heavy), 3 pages, 2 figure

    The importance of vitamin D and omega-3 PUFA supplementation: a nonpharmacologic immunomodulation strategy to halt autoimmunity

    Get PDF
    The large, randomized, double-blind, placebo-controlled trial VITAL (Vitamin D and omega 3 trial) recently confirmed that vitamin D and omega-3 polyunsaturated fatty acid (PUFA) co-supplementation (VIDOM) can reduce the incidence of autoimmune diseases. Based on these relevant results, this commentary summarizes the molecular mechanisms behind the anti-inflammatory and immunomodulatory properties of vitamin D and omega-3 PUFAs. We also describe the potential bidirectional interplay between vitamin D metabolism and omega-3 PUFA metabolism that underlies the rationale for VIDOM co-supplementation and that may contribute to enhance the anti-inflammatory and immunomodulatory actions of vitamin D and omega-3 PUFAs when these compounds are administered in combination

    Signal at subleading order in lattice HQET

    Full text link
    We discuss the correlators in lattice HQET that are needed to go beyond the static theory. Based on our implementation in the Schr\"odinger functional we focus on their signal-to-noise ratios and check that a reasonable statistical precision can be reached in quantities like fBsf_{B_s} and MBMBM_{B^\star}-M_B.Comment: 3 pages, Lattice2004(heavy), v2: corrected definition of X^{kin/spin

    Decay constants of charm and beauty pseudoscalar heavy-light mesons on fine lattices

    Get PDF
    We compute decay constants of heavy-light mesons in quenched lattice QCD with a lattice spacing of a ~ 0.04 fm using non-perturbatively O(a) improved Wilson fermions and O(a) improved currents. We obtain f_{D_s} = 220(6)(5)(11) MeV, f_D = 206(6)(3)(22) MeV, f_{B_s} = 205(7)(26)(17) MeV and f_B = 190(8)(23)(25) MeV, using the Sommer parameter r_0 = 0.5 fm to set the scale. The first error is statistical, the second systematic and the third from assuming a +-10% uncertainty in the experimental value of r_0. A detailed discussion is given in the text. We also present results for the meson decay constants f_K and f_\pi and the \rho meson mass.Comment: 13 pages, 7 figures. Replaced version contains analysis in terms of improved quark masses instead of bare quark masses, result for f_B changed by 1 MeV. Several typos corrected, in particular error bars in table 4. Version accepted in PL

    The running coupling from the four-gluon vertex in Landau gauge Yang-Mills theory

    Full text link
    We consider the running coupling from the four-gluon vertex in Landau gauge, SU(NcN_c) Yang-Mills theory as given by a combination of dressing functions of the vertex and the gluon propagator. We determine these functions numerically from a coupled set of Dyson-Schwinger equations. We reproduce asymptotic freedom in the ultraviolet momentum region and find a coupling of order one at mid-momenta. In the infrared we find a nontrivial (i.e. nonzero) fixed point which is three orders of magnitude smaller than the corresponding fixed point in the coupling of the ghost-gluon vertex. This result explains why the Dyson-Schwinger and the functional renormalization group equations for the two point functions can agree in the infrared, although their structure is quite different. Our findings also support Zwanziger's notion of an infrared effective theory driven by the Faddeev-Popov determinant.Comment: 25 pages, 4 figures; v2: minor clarifications added and typos corrected, version accepted by PR

    Improved interpolating fields for hadrons at non-zero momentum

    Get PDF
    We generalize Gaussian/Wuppertal smearing in order to produce non-spherical wave functions. We show that we can achieve a reduction in the noise-to-signal ratio for correlation functions of certain hadrons at non-zero momentum, while at the same time preserving a good projection on the ground state.Comment: 10 pages, 7 figures. Version accepted for publication in EPJ

    Local coherence and deflation of the low quark modes in lattice QCD

    Get PDF
    The spontaneous breaking of chiral symmetry in QCD is known to be linked to a non-zero density of eigenvalues of the massless Dirac operator near the origin. Numerical studies of two-flavour QCD now suggest that the low quark modes are locally coherent to a certain extent. As a consequence, the modes can be simultaneously deflated, using local projectors, with a total computational effort proportional to the lattice volume (rather than its square). Deflation has potentially many uses in lattice QCD. The technique is here worked out for the case of quark propagator calculations, where large speed-up factors and a flat scaling behaviour with respect to the quark mass are achieved.Comment: Plain TeX, 23 pages, 4 figures included; minor text modifications; version published in JHE
    corecore