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1. Introduction

The physical masses of the up and down quarks are much smaller than the typical low-

energy hadronic scales such as the pion decay constant and the string tension. In numerical

lattice QCD, the smallness of the quark masses still is a source of difficulty, for various

reasons, but mainly because the available simulation techniques become inefficient close to

the chiral limit.

It is not excluded, however, that many of the present limitations in lattice QCD can

be overcome by “deflating QCD”, i.e. by treating the eigenmodes of the Dirac operator

with small eigenvalues separately from the bulk of the quark modes. Deflation techniques

are used in many areas of applied science and they are also an active research topic in

numerical mathematics (see refs. [1, 2], for example, and references quoted there). In

lattice QCD low-mode deflation was so far mainly used in connection with statistical er-

ror reduction methods [3]–[7] that now go under the headings of low-mode averaging and

all-to-all propagators. Other applications of deflation methods in QCD include quark prop-

agator computations in special situations, where only a small number of modes need to be

deflated [8 – 10].

In the large-volume regime of QCD, the low-mode deflation methods proposed to

date however tend to become useless in practice, because the number of eigenvalues of

the Dirac operator below any fixed value, say 100 MeV, grows proportionally to the four-

dimensional volume V of the lattice. The computational effort required for the calculation

of the low quark modes and the deflation operations scales like V 2 in this situation (or

even a higher power of V ) and eventually offsets the benefits of low-mode deflation. As

Banks and Casher [11] noted long ago, the average spectral density of the low quark

modes is proportional to the quark condensate in the chiral limit. The V 2-problem is thus

directly linked to the spontaneous breaking of chiral symmetry and is therefore present

independently of the chosen lattice formulation of the theory.

At present little appears to be known about the space-time structure of the low quark

modes, but a simple numerical inspection, reported in section 5, suggests that they are

locally coherent to some extent. This property allows highly effective deflation subspaces

to be built from only a few low modes, using block projectors. The numerical effort required

for the preparation of the subspace and the deflation of the Dirac operator is then only of

order V (rather than V 2).

Before going into the details of the construction in sects. 4 and 5, the practical relevance

of the V 2-problem is briefly discussed in section 2 and it is explained, in section 3, how to

deflate the Dirac operator if the deflation subspace is not spanned by exact eigenmodes of

the operator. The potential of the proposed deflation method is demonstrated in section 6,

where a preconditioned solver for the lattice Dirac equation is described, whose efficiency

decreases only slightly with the quark mass and which outperforms any solver previously

used in lattice QCD by a large factor.
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2. Spectral density and the V
2-problem

2.1 Lattice parameters & field ensembles

All simulation results reported in this paper were obtained using the O(a)-improved Wilson

formulation of lattice QCD [12, 13] with two flavours of mass-degenerate sea quarks. Only

two lattices, of size 48× 243 and 64× 323, were considered, both at the same inverse gauge

coupling β = 5.3, sea-quark hopping parameter κsea = 0.13625 and value csw = 1.90952 [14]

of the Sheikholeslami-Wohlert improvement term. At this point in parameter space, the

lattice spacing a in physical units is estimated to be 0.0784(10) fm [15], while the sea-quark

mass is roughly equal to a quarter of the physical strange-quark mass ms.

Representative ensembles of gauge-field configurations on these two lattices were gen-

erated by the authors of ref. [15] and were made available for the studies conducted here.

The ensembles consist of 169 and 50 configurations, widely separated in simulation time so

that the residual autocorrelations can, in most cases, be expected to be negligible. How-

ever, the discussion that follows is intended to be largely qualitative and the quoted errors

and any systematic uncertainties will therefore be generously ignored.

2.2 Computation of the spectral density

In the Wilson theory, the spectrum of the (massive) lattice Dirac operator D is supported in

an elliptic region in the complex plane and is thus not easily compared with the spectrum of

the Dirac operator in the continuum theory and the Banks-Casher formula. This difficulty

can be bypassed by considering the hermitian operator D†D instead of D, a choice which

has other advantages as well. The computation of the low-lying eigenvalues of the operator,

for example, becomes relatively straightforward. In this paper all eigenvalue and eigenmode

calculations were performed using Chebyshev-accelerated subspace iterations (see appendix

A of ref. [16]).

The spectral density of (D†D)1/2, averaged over the ensemble of gauge-field configu-

rations on the 48 × 243 lattice, is shown in figure 1. Perhaps the most interesting feature

of this distribution is that it is practically constant above the threshold region at the

low end of the spectrum. The threshold of the density in infinite volume is, incidentally,

expected to be at ZAmsea [16], where ZA and msea denote the axial current renormaliza-

tion constant and the bare current-quark mass of the sea quark (ZA = 0.75(1) [17] and

amsea = 0.00761(7) [15] on the lattices considered here). As can be seen from the figure,

this value appears to give a good indication on where the bulk of the spectrum in finite

volume begins.

As discussed in ref. [16], the spectral density of (D†D)1/2 renormalizes multiplicatively,

the renormalization factor ZP being the same as the one of the pseudo-scalar density. For

the specified lattice parameters, the conversion factor from the lattice to the MS scheme

of dimensional regularization at renormalization scale µ = 2 GeV was recently determined

to be Z−1
P = 1.84(3) [20]. The range of eigenvalues in figure 1 thus extends up to about

121 MeV after conversion to the MS scheme, i.e. to a value approximately 25% larger than

the physical mass of the strange quark [18]–[20].
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Figure 1: Unrenormalized density ρ(λ) of the eigenvalues λ of (D†D)1/2 on the 48 × 243 lattice,

in units of ‘number of eigenvalues per MeV and fm4’. The lattice parameters are as specified

in subsection 2.1 and the dotted vertical line indicates the theoretically expected position of the

threshold of the density in infinite volume [16].

The spectral density on the 64 × 323 lattice was also computed and turned out to be

nearly the same as the one on the 48 × 243 lattice. In particular, the average number of

eigenmodes in the range covered by figure 1 increases from 29 on the smaller lattice to

about 89 on the big lattice, which shows that the V 2-problem is not an academic one.

The computation of the 32 lowest eigenvalues and associated eigenmodes of D†D on the

48× 243 lattice, for example, to a relative precision of 10−3, is in fact already a heavy task

that requires the Dirac operator to be applied some 2.5 × 105 times.

2.3 Comparison with the Banks-Casher formula

According to the Banks-Casher relation [11], the average number n(M) of eigenvalues of

the massless Dirac operator of magnitude less than M is, in the continuum theory, given

by

n(M) =
2

π
MΣV + O(M2), (2.1)

where Σ denotes the u-quark condensate in the thermodynamic limit. This formula holds

in any renormalization scheme, but Σ must refer to a definite normalization prescription.

A recently quoted result in two-flavour QCD for the condensate in the MS scheme is

Σ = (251 ± 13MeV)3 [21]. Setting M = 100 MeV for illustration, and assuming a 2L× L3

lattice, eq. (2.1) then yields the estimates n(M) = 21, 108 and 342 for the average number

of quark modes below M at L = 2, 3 and 4 fm.

These figures are in a similar range as the numerically determined mode numbers

reported in the previous subsection. A quantitative comparison must however take into

account the exact physical sizes of the simulated lattices and the fact that the lattice Dirac
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operator D includes the quark mass term. Inserting again the value of Σ quoted above

and converting the lattice sizes to physical units (using a = 0.0784 fm), the Banks-Casher

formula then predicts the average number of eigenvalues in the range covered by figure 1

to be 20 and 63, respectively, on the 48 × 243 and the 64 × 323 lattice. These values are

smaller than the actual numbers (29 and 89) of low modes on these lattices, but they are

in the same ballpark and one should also not forget that there are systematic uncertainties

in these calculations.

3. Inexact deflation

It should be quite clear at this point that good deflation methods in QCD should not

assume the low eigenmodes of the Dirac operator to be accurately known. Eventually the

only requirements are that the method is efficient and that the correctness of the final

results is guaranteed. Inexact deflation was already discussed in ref. [10], for example, and

will be driven to the extreme in this paper, partly following recent developments in the

mathematical literature [1, 2].

3.1 Oblique projector algebra

Deflation methods in QCD usually start from a set of quark fields, φ1(x), . . . , φN (x), which

will here be assumed to be orthonormal but are otherwise left unspecified.1 The orthogonal

projector P to the space S spanned by these fields (the deflation subspace) acts on a given

quark field ψ(x) according to

Pψ(x) =

N
∑

k=1

φk(x) (φk, ψ) , (3.1)

where the bracket (χ,ψ) denotes the obvious scalar product in the linear space of all quark

fields.

The restriction of the lattice Dirac operator D to the deflation subspace is referred to

as the little Dirac operator. It is completely specified by the matrix

Akl = (φk,Dφl) , k, l = 1, . . . , N, (3.2)

that represents its action on the basis fields. In the following, the little Dirac operator is

assumed to be invertible, a requirement that will always be satisfied in practice. The linear

operators

PLψ(x) = ψ(x) −

N
∑

k,l=1

Dφk(x)(A−1)kl (φl, ψ) , (3.3)

PRψ(x) = ψ(x) −

N
∑

k,l=1

φk(x)(A−1)kl (φl,Dψ) , (3.4)

1The term quark field is reserved for lattice Dirac fields that carry a colour but no flavour index. The

eigenmodes of D
†
D with small eigenvalues are referred to as the low quark modes or, somewhat abusively,

as the low modes of the Dirac operator.
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can then be defined, where the subscripts stand for “left” and “right” because PL and PR

usually appear on the left and right of the Dirac operator. These operators are oblique

projectors, i.e. they are not hermitian but satisfy

P 2
L = PL, P 2

R = PR. (3.5)

Other algebraic identities that follow directly from the definitions (3.1)–(3.4) are

PLD = DPR, (3.6)

PPL = PRP = 0, (3.7)

PL(1 − P ) = (1 − P )PR = 1 − P. (3.8)

In particular, PL projects to the orthogonal complement of the deflation subspace.

3.2 Deflation of the Dirac equation

The inhomogeneous Dirac equation,

Dψ(x) = η(x), (3.9)

may now be split into two independent equations by acting with the projectors PL and

1 − PL from the left. The second equation can be solved immediately and the solution of

the full system is then given by

ψ(x) = χ(x) +
N

∑

k,l=1

φk(x)(A−1)kl (φl, η) , (3.10)

where χ(x) must solve the deflated system

PLDχ(x) = PLη(x) (3.11)

subject to the constraint (1 − PR)χ(x) = 0. In view of the commutator property (3.6),

this constraint is consistent with the deflated system and can be freely imposed. One may

actually solve the deflated equation (3.11) without imposing any constraint and simply

apply PR to the calculated solution at the end of the computation.

The full quark propagator S(x, y) can be similarly split into two parts,

S(x, y) = PRS(x, y) +

N
∑

k,l=1

φk(x)(A−1)klφl(y)†, (3.12)

the second term being the contribution along the deflation subspace while the first coincides

with the Green function of the deflated system (3.11). In practice eq. (3.12) may be a

starting point for the application of variance reduction methods such as those described in

refs. [4, 7].

– 6 –
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3.3 Deflation efficiency

Some insight into why deflation is potentially beneficial is obtained by noting that the

deflated operator

D̂ = PLD = PLD(1 − P ) (3.13)

acts in the orthogonal complement S⊥ of the deflation subspace. Moreover, a little algebra

shows that D̂ is the Schur complement of D with respect to S and that its inverse in S⊥

is given by

D̂−1 = (1 − P )D−1(1 − P ). (3.14)

The condition number of the deflated system (3.11) is thus expected to be significantly

smaller than the condition number of the full system if the low modes of the Dirac operator

are sufficiently suppressed by the projector 1 − P .

For any given normalized quark field ψ(x), the deficit

ǫ = ‖(1 − P )ψ‖2 (3.15)

provides a practical measure of how well the field is approximated by the deflation subspace.

Useful subspaces will have to be such that all low quark modes (in, say, the range considered

in section 2) have small deficits ǫ. However, contrary to what may be presumed, the

construction of such subspaces does not require the low modes to be computed to any

accuracy (see section 5).

4. Domain-decomposed subspaces

The deflation subspaces considered in the following are based on a division of the lattice

into non-overlapping rectangular blocks of lattice points. Domain decompositions of this

kind were previously introduced for the Schwarz preconditioning of the Dirac operator and

the HMC algorithm [22, 23], but the subspaces constructed in this paper are not linked to

the Schwarz preconditioning and can be used in many different ways.

4.1 Block projection method

Once the lattice is divided into blocks, local deflation subspaces may be defined by speci-

fying Ns orthonormal quark fields φΛ
l (x), l = 1, . . . , Ns, on each block Λ. The full deflation

subspace is then spanned by the set of all these local subspaces and thus has dimension

N = NbNs, where Nb denotes the number of blocks in the lattice. In particular, at fixed

block size, the total number of basis fields scales proportionally to the lattice volume V .

Subspaces of this kind fit the general framework discussed in the previous section if the

basis fields are relabelled by an index k running from 1 to N . The little Dirac operator,

the deflation projectors and the deflated Dirac operator are thus defined as before. An

obvious advantage of the construction is that the application of the projector P to a given

quark field ψ(x),

Pψ(x) =
∑

Λ

Ns
∑

l=1

φΛ
l (x)

(

φΛ
l , ψ

)

, (4.1)
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requires a number of arithmetic operations proportional to the lattice volume times Ns

(rather than N). From the point of view of the operations count and the memory re-

quirements, the subspace thus behaves as if it were spanned by only Ns fields. A notable

exception to this rule is the little Dirac operator, which always acts in a space of dimension

N .

4.2 Building domain-decomposed subspaces from global fields

In practice the block fields φΛ
l (x), l = 1, . . . , Ns, will be obtained starting from a set of Ns

globally defined quark fields ψl(x). The procedure is very simple and begins by projecting

the input fields to the blocks, i.e. by defining the fields

ψΛ
l (x) =

{

ψl(x) if x ∈ Λ,

0 otherwise,
(4.2)

on each block Λ. The Gram-Schmidt orthonormalization process is then applied to these

and the orthonormalized fields are taken to be the basis elements φΛ
l (x).

The subspace generated in this way contains the fields ψl(x), but since the number of

basis fields is multiplied by the number of blocks, the subspace tends to be much larger

than the space spanned by the input fields.

4.3 Deflation of the free-quark theory

For illustration and in order to motivate the further developments, it is now helpful to

briefly consider the case of the free-quark theory. As will become clear below, a good

choice of the basis fields in this theory are the constant modes. Since the quark fields carry

a Dirac and a colour index, one has Ns = 12 orthonormal constant modes on each block.

If periodic or anti-periodic boundary conditions are imposed, the eigenmodes of the

Dirac operator are plane waves of the form

ψp(x) = up eipx, (4.3)

where up is a spinor that depends on the momentum p but not on the position x. Assuming

an L4 lattice and a block division into blocks of size b4 (where L is an integer multiple of

b), a straightforward computation then shows that

‖(1 − P )ψp‖
2 = ǫp‖ψp‖

2, ǫp =
1

12
p2

(

b2 − a2
)

+ O(p4b4). (4.4)

The projection to the orthogonal complement of the specified deflation subspace thus sup-

presses the low-momentum modes by a factor proportional to p2 (see figure 2).

A second and perhaps more important observation is that the deflation efficiency does

not depend on the lattice size. Even on very large lattices, all low modes with momenta p

of magnitude up to some fraction of 1/b are deflated with small deficits ǫp. Figure 2 also

illustrates the fact that high deflation efficiencies can be achieved by subspaces of fields

that are only piecewise smooth, i.e. fields that are far from being approximate eigenmodes

of the Dirac operator.

– 8 –
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Figure 2: Approximation of a plane wave by a superposition of constant block modes. In the free-

quark theory, piecewise constant deflation modes achieve high deflation efficiencies up to momenta

p on the order of the inverse of the block size b.

5. Local coherence and subspace generation

The discussion in the previous section suggests that the V 2-problem can perhaps be solved

using domain-decomposed deflation subspaces. However, no general prescription was given

so far of how to choose the fields ψl(x), l = 1, . . . , Ns, from which these subspaces are built

(cf. subsection 4.2). Such a prescription will now be developed, based on a property of the

low quark modes referred to as local coherence.

5.1 Smoothness & local coherence

In the free-quark theory, the block projection method works out because the low-momentum

modes are smooth on the scale of the block size b. The intuitive picture that goes along

with this explanation is rather appealing but may be difficult to carry over to the full

theory. In particular, the notion of smoothness ceases to have a well-defined meaning in

presence of a non-trivial lattice gauge field.

A related concept which is better adapted to the situation in the full theory is local

coherence. Loosely speaking, a set of quark fields is referred to as locally coherent if the

fields are locally well approximated by a relatively small number of fields. When projected

to the blocks of a block lattice, for example, such fields are contained in small subspaces

of block fields, up to small deficits that depend on the block size and the dimension of the

local subspaces.

It is quite clear that the block projection method can only work out if the low quark

modes are locally coherent in this sense. Whether this is so appears to be difficult to tell on

the basis of simple reasoning alone. The free-quark theory certainly provides little guidance

at this point, because the physics of the low modes is completely different from the one in

the full theory.

– 9 –
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5.2 Numerical experiments

Local coherence is a property that can be investigated numerically in a straightforward

manner. One begins with an accurate computation of the low-lying eigenvalues and associ-

ated eigenmodes of D†D and constructs a domain-decomposed subspace from an arbitrary

subset of the calculated modes, following the lines of subsection 4.2. The question is then

whether all other low modes are also contained in this subspace, up to small deficits ǫ.

Several numerical experiments of this kind were performed in two-flavour QCD on the

lattices specified in subsection 2.1. The results are quite impressive and unambiguously

show that the low modes in this theory are locally coherent to a high degree. Moreover,

the property appears to hold for every individual gauge-field configuration and not just on

average.

If the 64 × 323 lattice is divided into blocks of size 44, for example, and if 12 eigen-

modes out of 48 are selected for the construction of the domain-decomposed subspace, the

remaining 36 modes turn out to lie in the subspace up to deficits ǫ ranging from 0.03 to

0.06. The deficits increase with the block size, but become smaller if more modes are used

for the subspace construction. On the 48×243 lattice the situation is practically the same,

i.e. similar deficits are obtained for a given block size and subspace dimension.

5.3 Subspace generation

As explained in subsection 4.2, the deflation subspaces constructed in this paper are ob-

tained by restricting a set of quark fields ψl(x), l = 1, . . . , Ns, to the blocks of a block

division of the lattice. The fields could be taken to be low eigenmodes of the Dirac opera-

tor, but it is far more economical to generate them by a relaxation process, starting from

a set of random fields.

A relaxation method that can be used in this context is inverse iteration, where the

fields are updated a number of times according to

ψl(x) → “D−1”ψl(x), l = 1, . . . , Ns. (5.1)

The inverse of the Dirac operator is put in quotes in this formula, because an accurate

solution of the Dirac equation is not required. The application of a few cycles of the Schwarz

alternating procedure [22], for example, actually already has the desired relaxation effect.

Moreover, the procedure can be bootstrapped by using the current set of fields to deflate

the Dirac equation and thus to accelerate the approximate solution of the equation in the

next step (see section 6).

Inverse iteration rapidly depletes the components of the fields parallel to the high

modes of the Dirac operator. After a few cycles, the fields then satisfy the bound

‖Dψl‖ ≤ M‖ψl‖, l = 1, . . . , Ns. (5.2)

for some value of M in the range of the low eigenvalues of (D†D)1/2.

An important remark is now that such fields are, to a good approximation, linear

combinations of the low quark modes. They are therefore locally coherent with these and

consequently generate domain-decomposed subspaces that approximate the low modes up

– 10 –
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to small deficits. Some further experimenting actually confirms this and also shows that

the deflation efficiencies are not very different from those achieved by domain-decomposed

subspaces built from exact low modes.

5.4 Choice of parameters

The deflation efficiency of the subspaces generated in this way depends on the block size,

the dimension Ns of the local subspaces and on the number and quality of inverse iteration

steps that were applied. Choosing small blocks and large numbers Ns of fields results in

high deflation efficiencies but tends to increase the condition number of the little Dirac

operator and thus the computer time required for the application of the oblique projectors

PL and PR. Similarly, the beneficial effects of high numbers of fields and inverse iteration

steps must be balanced against the effort spent for the subspace generation.

On the lattices specified in subsection 2.1, choosing blocks of size 44 and setting Ns = 20

turns out to be a good compromise. Highly efficient deflation subspaces are obtained in

this case if the relaxation procedure is stopped when the bound (5.2) is satisfied for a

value of M in the MS scheme equal to 100 MeV or so (cf. section 2). This level is reached

after 11 inverse iteration steps and requires a computational effort equivalent to about 190

applications of the Dirac operator per field (if slightly less effective deflation subspaces are

acceptable, one can do with 8 steps and 130 applications).

In general the parameters will have to be tuned empirically. If a deflated solver program

like the one described in the next section is available, the deflation efficiency of a given

subspace can be quickly determined by measuring the time required for the solution of

the Dirac equation to a specified accuracy. Computations of the low quark modes are

then again not required. The inverse iteration steps can, incidentally, be carried out at a

valence quark mass different from the sea-quark mass. For reasons of efficiency, it is in fact

recommended to set the bare mass in this process to a value close to (or even equal to) the

critical mass.

6. Deflation-accelerated solver for the Dirac equation

Low-mode deflation is expected to be useful in several areas of lattice QCD, some of

which [3]–[10] were already mentioned in section 1. The principal goal in this section is to

show, in a concrete case, that the deflation subspaces constructed following the prescrip-

tions given in the previous section are very effective and that they actually do provide a

solution to the V 2-problem.

6.1 Preconditioned Dirac equation

Once the deflation subspace is generated, the deflated Dirac equation (3.11) can be solved

straightforwardly using any of the well-known Krylov space algorithms (see ref. [24], for

example). However, from the point of view of the execution time, such a solver may not

perform too well, because the little system

N
∑

l=1

Aklvl = wk, k = 1, . . . , N, (6.1)

– 11 –
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must be solved, for one source vector w = (w1, . . . , wN ), each time the projector PL is

applied. As explained in appendix A, there are efficient algorithms to solve the little Dirac

equation, but the computational effort remains non-negligible.

A better balance of deflation and other operations can be achieved by right-precon-

ditioning the deflated equation. The solver discussed in the following includes the Schwarz

preconditioner Msap introduced in ref. [22], but a polynomial preconditioner or a fixed

number of GMRES iterations [25, 26] may do just as well. In the case of the Schwarz

preconditioner, the preconditioned deflated equation reads

PLDMsapφ(x) = PLη(x) (6.2)

and the solution of eq. (3.11) is then given by χ(x) = PRMsapφ(x). The important point to

note is that the preconditioning reduces the iteration count of the Krylov space algorithm

and thus the overhead generated by the deflation projector.

6.2 Krylov space solver and the deflation-relaxation interplay

Both the Schwarz preconditioner and the deflation projector involve approximate iterative

procedures. The GCR algorithm is a recommended Krylov space solver in this situation,

because it allows for inexact preconditioning without compromising the correctness of the

solution (see ref. [24] for a general discussion and ref. [22] for a description of the algorithm

in the context of lattice QCD).

An interesting feature of the GCR algorithm is that the Krylov space is extended, in

each step, in a direction ξ(x) = Msapρ(x) where ρ(x) denotes the current residue. The latter

satisfies PLρ(x) = ρ(x) by construction and is therefore orthogonal to the deflation subspace

(cf. section 3). When acting on such a field, the alternating Schwarz procedure (which is

basically a relaxation method) tends to be quite effective in producing an approximate

solution of the Dirac equation Dξ(x) = ρ(x). Low-mode deflation thus has the effect of

improving the efficiency of the preconditioner.

Once ξ(x) is calculated, the minimal residue in the so extended Krylov space is de-

termined by computing PLDξ(x) and by applying an orthogonalization process. There is

thus an interplay between deflation and relaxation, where the low-mode and the high-mode

components of the residue are reduced in alternation by the deflation projector and the

Schwarz preconditioner.

6.3 Performance tests

The performance of the complete algorithm (DFL+SAP+GCR for short) was determined

on the lattices specified in subsection 2.1, at the values of the (valence) quark mass that

correspond to the hopping parameters κval listed in table 1. In this range of masses, the

bare current-quark mass mval decreases from the strange-quark mass ms to approximately
1
6
ms [15], where the condition number of the Dirac operator reaches a value of about 1900.

In order for the effects of low-mode deflation to be clearly seen, the perfor-

mance measurements were extended to the even-odd preconditioned BiCGstab algorithm

(EO+BiCGstab) [27, 28] and the Schwarz-preconditioned GCR algorithm without defla-

tion (SAP+GCR) [22]. In all cases, the tests consisted in measuring the solver iteration
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EO+BiCGstab SAP+GCR DFL+SAP+GCR

Lattice κval NBiCG t [sec] NGCR t [sec] NGCR t [sec]

48 × 243 0.13550 314 57 50 35 17 15

0.13590 492 90 78 56 19 18

0.13610 684 125 110 78 20 19

0.13625 954 174 157 118 21 21

0.13635 1269 231 227 170 22 22

64 × 323 0.13550 323 72 52 45 17 20

0.13590 520 115 83 71 20 23

0.13610 748 165 120 103 21 26

0.13625 1125 248 183 171 23 29

0.13635 1663 366 294 267 25 32

Table 1: Average solver iteration numbers NX and executing times t, using 24 and 64 processors,

respectively, in the case of the 48 × 243 and the 64 × 323 lattice.

numbers and the computer time required for the solution of the full Dirac equation (3.9) to

a precision where ‖η − Dψ‖ ≤ 10−10‖η‖. Timings were taken on a recent PC cluster with

Infiniband network, using 12 and 32 double-processor nodes for the tests on the 48 × 243

and the 64 × 323 lattice respectively. Only highly optimized, parallel programs were used

that include machine-specific enhancements such as those mentioned in ref. [22]. Quoted

solver iteration numbers and timings are averages over 50 gauge-field configurations.

The algorithmic parameters were set to the same values on the 48 × 243 and the

64 × 323 lattice. In particular, the deflation subspaces were constructed by applying 11

inverse iteration steps to Ns = 20 random fields and by projecting them to a division of

the lattice into blocks of size 44. In the case of the Schwarz preconditioner, the block size

was taken to be 8× 43 and all other parameters were set to the standard values previously

used in refs. [22, 23, 15]. A fairly small value, Nkv = 16, turned out to be a satisfactory

choice for the maximal number Nkv of Krylov vectors that may be generated before the

GCR algorithm is restarted (larger values, up to Nkv = 32, had to be used in the case of

the SAP+GCR solver).

As is evident from the test results quoted in table 1, low-mode deflation significantly

reduces both the solver iteration numbers and the time needed to solve the Dirac equation

to a specified precision. Particularly impressive is the fact, illustrated in figure 3, that the

deflated algorithm has a flat scaling behaviour with respect to the quark mass. Moreover,

the solver iteration numbers on the two lattices are nearly the same, which is very much in

line with the expectation that the efficiency of the domain-decomposed deflation subspaces

is independent of the lattice volume and that they provide a solution to the V 2-problem.

Contrary to the solver iteration numbers, the timings quoted in last column of table 1

are sensitive to the time required for the application of the deflation projector PL and thus

to the average time needed for the solution of the little Dirac equation (see appendix A).

The application of the projector actually consumed as much as 25% of the total time on
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Figure 3: Average execution time t needed for the solution of the lattice Dirac equation on the

64×323 lattice as a function of the bare valence quark mass mval given in units of the lattice spacing

a. The lattice, algorithm and test parameters are as specified in subsects. 2.1 and 6.3. Dotted lines

are drawn to guide the eye.

the small lattice and up to 30% on the big lattice.

6.4 Miscellaneous remarks

(i) Partially quenched QCD. In the tests reported in the previous subsection, the defla-

tion subspace was generated only once per gauge-field configuration, i.e. the same

subspace was used at all values of the valence-quark mass considered.

(ii) Deflation overhead. The average time spent for the subspace generation was 150 and

184 seconds, respectively, on the 48 × 243 and the 64 × 323 lattice. These figures

include the time needed for the computation of the little Dirac operator (3.3 and 3.9

seconds). The computational effort required for the preparatory work thus becomes

quickly negligible if several quark propagators are to be computed.

(iii) Solver stability. In the case of the deflated solver, the GCR iteration numbers NGCR

tend to be very stable. The iteration numbers observed in the tests actually deviated

by at most 1 from their average values, except at the smallest quark mass on the

64 × 323 lattice, where the maximal value of NGCR ever seen was 27.

(iv) Acceleration of the HMC algorithm. The HMC simulation algorithm [29] requires

the lattice Dirac equation to be solved at regular intervals along the trajectories in
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field space which lead from the current to the next configuration. Whether the use

of low-mode deflation is profitable in this case depends on the quark mass and the

precision requirements.

On the lattices specified in subsection 2.1, for example, an acceleration is achieved

at hopping parameters κsea ≥ 0.13625, if the relative solver tolerance is set to 10−7

or less and if, say, 8 inverse iteration steps are used for the subspace generation. At

these fairly small quark masses, the scaling behaviour of the HMC algorithm is then

softened by nearly one power in the quark mass.

In practice much larger speed-up factors can conceivably be obtained by updating

the deflation subspace along the trajectories in field space rather than generating

the subspace from scratch each time the Dirac equation must be solved. Moreover,

starting from the exact factorization

detD = det Adet D̂ (6.3)

of the quark determinant, the HMC algorithm itself can perhaps be deflated too,

in which case further accelerations and an improved stability of the algorithm will

presumably be achieved.

7. Concluding remarks

An important qualitative result of this paper is the demonstration that the low quark

modes can be simultaneously deflated using local subspaces of low dimension. Some further

clarification (an analytic proof of the local coherence of the low modes, for example) would

certainly be welcome, but the numerical studies conducted so far leave little doubt that

the construction does indeed provide a solution to the V 2-problem.

Variance reduction methods, such as low-mode averaging [4] and all-to-all propagator

techniques [6, 7], will probably be able to profit from these developments. The performance

of the deflation-accelerated solver for the lattice Dirac equation discussed in the previous

section is, in any case, quite impressive, particularly so at the smallest quark masses con-

sidered. In many cases the computational effort required for the calculation of hadronic

correlation functions is thus significantly reduced.

The possible inclusion of deflation ideas in QCD simulation algorithms is an intriguing

perspective, since this may allow simulations close to the physical values of the light-quark

masses to be performed with an effort not very much larger than the one required at a

sea-quark mass equal to, say, a fourth of the physical strange-quark mass.
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Figure 4: Support of the function Dφ(x) (black points) if φ(x) is supported on the grey block in

the centre of the figure. In particular, the matrix elements (A.1) vanish unless the blocks Λ and Λ′

coincide or are nearest neighbours.

Centre (CSCS). I am grateful to these institutions for providing the required computer
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A. Solution of the little Dirac equation

In practice the dimension N of the domain-decomposed deflation subspaces introduced in

this paper tends to be so large that an exact solution of the little Dirac equation (6.1) is not

a viable option. The iterative solver proposed here is based on even-odd preconditioning,

global-mode deflation and the GCR algorithm.

A.1 Computation of the little Dirac operator

The block division of the lattice implies a decomposition of the little Dirac operator into

Ns × Ns block matrices BΛΛ′ , whose matrix elements are given by

(BΛΛ′)kl = (φΛ
k ,DφΛ′

l ), k, l = 1, . . . , Ns. (A.1)

Since the Wilson-Dirac operator has only nearest-neighbour hopping terms, most of these

matrices vanish and a moment of thought reveals that the little Dirac operator actually

couples nearest-neighbour blocks only (see figure 4).

The computation of the scalar products (A.1) is straightforward and requires a total

effort proportional to the lattice volume times N2
s . Note, however, that the operations

count tends to increase rapidly if lattice Dirac operators with hopping terms extending

over two or more links are considered.

A.2 Even-odd preconditioning

The even-odd preconditioning familiar from the full lattice Dirac operator can also be ap-

plied to the little Dirac operator in its block form if there is an even number of blocks in

each direction (which is here assumed to be the case). If the so-called symmetric precondi-

tioning is chosen [18], the block matrices representing the preconditioned operator on even
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blocks Λ,Λ′ are given by

B̂ΛΛ′ = δΛΛ′ −
∑

Ω

(BΛΛ)−1BΛΩ(BΩΩ)−1BΩΛ′ , (A.2)

where the sum extends over the common neighbours Ω of the blocks Λ and Λ′.

The matrices (A.2) do not need to be stored in the memory of the computer, because

the action of the preconditioned operator on a complex field can be computed in two steps,

first hopping from the even to the odd blocks and then back to the even blocks. Some work

can however be saved by storing the matrices (BΛΛ)−1BΛΛ′ for all nearest-neighbour pairs

Λ,Λ′ of blocks.

On physically small blocks Λ, the diagonal block matrices BΛΛ tend to be safely in-

vertible, but the program should check this and return to the original system if an ill-

conditioned matrix is encountered (this never happened in the tests reported in this paper).

A.3 Global-mode deflation

As explained in subsection 4.2, the basis fields φΛ
l (x) on the blocks Λ are obtained starting

from a set of global fields ψl(x), l = 1, . . . , Ns. The latter span a subspace in the generated

deflation subspace which may be used to deflate the little Dirac operator. Actually only

the components of the global fields on the even blocks are used to build this “little deflation

subspace”, because the little Dirac equation is to be deflated in its even-odd preconditioned

form.

The equation is deflated following the general procedures described in section 3. One

simply has to replace the full Dirac operator by the even-odd preconditioned little Dirac

operator and the quark fields by complex fields with N/2 components. Note that the “little

little Dirac operator” is an Ns ×Ns matrix that can be inverted to machine precision with

a negligible effort.

Global-mode deflation is straightforward to implement and tends to reduce the condi-

tion number of the little system quite significantly (by about a factor 3 in the cases studied

so far).

A.4 Solver performance

Similarly to the full system, the deflated preconditioned little equation can be solved using

the GCR algorithm. Tests of the complete solver were then performed using the same

subspaces as in subsection 6.3. In particular, the number of GCR iterations NGCR and the

time t needed to solve the little equation to a relative precision of 10−12 were determined

and are quoted in columns 3 and 4 of table 2.

The dependence of these figures on the valence quark mass and the lattice volume is

noticeable, but one can also see that the solver iteration numbers increase only relatively

slowly towards the smaller quark masses. In practice all these variations are not too

important, because the solution of the little system eventually consumes only a fraction of

the time spent for the solution of the full system.
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Lattice κval NGCR t [sec] NGCR

48 × 243 0.13550 84 0.26 24

0.13590 105 0.32 30

0.13610 120 0.37 34

0.13625 136 0.42 38

0.13635 150 0.46 42

64 × 323 0.13550 94 0.37 27

0.13590 126 0.49 36

0.13610 154 0.60 44

0.13625 188 0.73 54

0.13635 220 0.85 62

Table 2: GCR iteration numbers and time (using 24 and 64 processors, respectively, in the case

of the 48 × 243 and the 64 × 323 lattice) needed for the solution of the little system.

A.5 Using adapted precision

It is still worth including another improvement, however, which exploits the fact that the

outer GCR algorithm (the one that solves the full system) is restarted from time to time,

usually when the dimension of the generated Krylov space reaches the specified maximal

value. Before each restart, the current residue is recomputed with high precision so that

any inaccuracies which may have accumulated during the last cycle do not propagate to

the next cycle.

For this reason it is permissible to solve the little Dirac equation to low precision inside

the cycles of the outer algorithm. In the tests reported in subsection 6.3, for example, the

required relative tolerances were set to 10−6 and 10−12, respectively, inside and outside the

cycles of the algorithm. The average solver iteration numbers are then practically reduced

by a factor 2.

They can actually be reduced even further by adapting the precision as one proceeds

from one Krylov vector to the next within a cycle. This is possible because the GCR

algorithm operates directly on the minimal residuals in the generated Krylov spaces. Their

magnitude decreases monotonically and need to be computed essentially only to a fixed

decimal precision. The required precision for the solution of the little system can therefore

be reduced in proportion to the norm of the quark fields on which the deflation projector

PL acts.

Once all these improvements are installed, the average iteration numbers NGCR re-

quired for the solution of the little system in the course of the cycles of the outer algorithm

are reduced to the figures quoted in the last column of table 2. At the smallest quark mass

on the 64 × 323 lattice, for example, the time spent for the solution of the little system

sums up to about 6 seconds, i.e. about 19% of the total time needed for the solution of the

full system.
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