72 research outputs found

    Insights From Liver-Humanized Mice on Cholesterol Lipoprotein Metabolism and LXR-Agonist Pharmacodynamics in Humans

    Get PDF
    Background and Aims Genetically modified mice have been used extensively to study human disease. However, the data gained are not always translatable to humans because of major species differences. Liver-humanized mice (LHM) are considered a promising model to study human hepatic and systemic metabolism. Therefore, we aimed to further explore their lipoprotein metabolism and to characterize key hepatic species-related, physiological differences. Approach and Results Fah(-/-), Rag2(-/-), and Il2rg(-/-) knockout mice on the nonobese diabetic (FRGN) background were repopulated with primary human hepatocytes from different donors. Cholesterol lipoprotein profiles of LHM showed a human-like pattern, characterized by a high ratio of low-density lipoprotein to high-density lipoprotein, and dependency on the human donor. This pattern was determined by a higher level of apolipoprotein B100 in circulation, as a result of lower hepatic mRNA editing and low-density lipoprotein receptor expression, and higher levels of circulating proprotein convertase subtilisin/kexin type 9. As a consequence, LHM lipoproteins bind to human aortic proteoglycans in a pattern similar to human lipoproteins. Unexpectedly, cholesteryl ester transfer protein was not required to determine the human-like cholesterol lipoprotein profile. Moreover, LHM treated with GW3965 mimicked the negative lipid outcomes of the first human trial of liver X receptor stimulation (i.e., a dramatic increase of cholesterol and triglycerides in circulation). Innovatively, LHM allowed the characterization of these effects at a molecular level. Conclusions LHM represent an interesting translatable model of human hepatic and lipoprotein metabolism. Because several metabolic parameters displayed donor dependency, LHM may also be used in studies for personalized medicine.Peer reviewe

    Effects of endocrine disrupting chemicals on gonad development: Mechanistic insights from fish and mammals

    Get PDF
    Over the past century, evidence has emerged that endocrine disrupting chemicals (EDCs) have an impact on reproductive health. An increased frequency of reproductive disorders has been observed worldwide in both wildlife and humans that is correlated with accidental exposures to EDCs and their increased production. Epidemiological and experimental studies have highlighted the consequences of early exposures and the existence of key windows of sensitivity during development. Such early in life exposures can have an immediate impact on gonadal and reproductive tract development, as well as on long-term reproductive health in both males and females. Traditionally, EDCs were thought to exert their effects by modifying the endocrine pathways controlling reproduction. Advances in knowledge of the mechanisms regulating sex determination, differentiation and gonadal development in fish and rodents have led to a better understanding of the molecular mechanisms underlying the effects of early exposure to EDCs on reproduction. In this manuscript, we review the key developmental stages sensitive to EDCs and the state of knowledge on the mechanisms by which model EDCs affect these processes, based on the roadmap of gonad development specific to fish and mammals.The authors are grateful to the Intersectoral Centre for Endocrine Disruptor Analysis (ICEDA)'s researcher network that facilitated this Special Issue. LNM was supported by a H2020-Marie SkƂodowska-Curie Action MSCA-IF-RI- 2017 awarded by the European Commission (ref. 797725-EpiSTOX).With the institutional support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S)Peer reviewe

    Bacterial Community Profiling of Milk Samples as a Means to Understand Culture-Negative Bovine Clinical Mastitis

    Get PDF
    Inflammation and infection of bovine mammary glands, commonly known as mastitis, imposes significant losses each year in the dairy industry worldwide. While several different bacterial species have been identified as causative agents of mastitis, many clinical mastitis cases remain culture negative, even after enrichment for bacterial growth. To understand the basis for this increasingly common phenomenon, the composition of bacterial communities from milk samples was analyzed using culture independent pyrosequencing of amplicons of 16S ribosomal RNA genes (16S rDNA). Comparisons were made of the microbial community composition of culture negative milk samples from mastitic quarters with that of non-mastitic quarters from the same animals. Genomic DNA from culture-negative clinical and healthy quarter sample pairs was isolated, and amplicon libraries were prepared using indexed primers specific to the V1–V2 region of bacterial 16S rRNA genes and sequenced using the Roche 454 GS FLX with titanium chemistry. Evaluation of the taxonomic composition of these samples revealed significant differences in the microbiota in milk from mastitic and healthy quarters. Statistical analysis identified seven bacterial genera that may be mainly responsible for the observed microbial community differences between mastitic and healthy quarters. Collectively, these results provide evidence that cases of culture negative mastitis can be associated with bacterial species that may be present below culture detection thresholds used here. The application of culture-independent bacterial community profiling represents a powerful approach to understand long-standing questions in animal health and disease

    Contrasting Diversity Patterns of Crenarchaeal, Bacterial and Fungal Soil Communities in an Alpine Landscape

    Get PDF
    International audienceBackground: The advent of molecular techniques in microbial ecology has aroused interest in gaining an understanding about the spatial distribution of regional pools of soil microbes and the main drivers responsible of these spatial patterns. Here, we assessed the distribution of crenarcheal, bacterial and fungal communities in an alpine landscape displaying high turnover in plant species over short distances. Our aim is to determine the relative contribution of plant species composition, environmental conditions, and geographic isolation on microbial community distribution. Methodology/Principal Findings: Eleven types of habitats that best represent the landscape heterogeneity were investigated. Crenarchaeal, bacterial and fungal communities were described by means of Single Strand Conformation Polymorphism. Relationships between microbial beta diversity patterns were examined by using Bray-Curtis dissimilarities and Principal Coordinate Analyses. Distance-based redundancy analyses and variation partitioning were used to estimate the relative contributions of different drivers on microbial beta diversity. Microbial communities tended to be habitat- specific and did not display significant spatial autocorrelation. Microbial beta diversity correlated with soil pH. Fungal beta- diversity was mainly related to soil organic matter. Though the effect of plant species composition was significant for all microbial groups, it was much stronger for Fungi. In contrast, geographic distances did not have any effect on microbial beta diversity. Conclusions/Significance: Microbial communities exhibit non-random spatial patterns of diversity in alpine landscapes. Crenarcheal, bacterial and fungal community turnover is high and associated with plant species composition through different set of soil variables, but is not caused by geographical isolation

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF

    Enhancement of antimicrobial activities of whole and sub-fractionated white tea by addition of copper (II) sulphate and vitamin C against 'Staphylococcus aureus'; a mechanistic approach.

    Get PDF
    WT showed no efficacy in the combinations tested. WTF was enhanced with copper (II) sulphate and further with vitamin C. WT and WTF increased acidity of copper (II) sulphate possibly via the formation of chemical complexes. The difference in WT/WTF absorbance possibly represented substances less concentrated or absent in WTF. Investigations to establish which WTF component/s and in what proportions additives are most effective against target organisms are warranted

    Influence of the nature of the gas phase on the degradation of RNA during fossilization processes

    No full text
    International audienceThe search for the most ancient traces of life on Earth has always been fraught with controversies because of the inevitable degradation undergone by fossilized biomolecules. Laboratory experiments may provide unique clues to achieve a better mechanistic understanding of the key processes involving (biogenic or abiotic) organic carbon during a geological history. The Earth atmosphere has changed over geological times, from a CO 2-rich atmosphere during the Hadean and Archean to the O 2-rich atmosphere of the present day, with a direct impact on the nature of the gas phase trapped within the sediment porosity. Yet, the influence of the nature of this gas phase on fossilization processes has almost never been investigated. Here, we conducted a series of fossilization experiments using an emblematic biomolecule (i.e. RNA) and clay minerals at 200°C for 7 days in closed systems in equilibrium with two different gas phases (e.g. CO 2 versus N 2 /O 2). The multiscale characterization of experimental residues using a suite of advanced microscopy and spectroscopy techniques showed that the final organomineral assemblages strongly depend on the nature of the gas phase. In addition to the nature of the mineral phases, results showed that the nature of the gas phase impacts the chemistry of the residual N-rich organic compounds trapped within the interlayer spaces of Mg-smectites (e.g. mainly aliphatic-rich under CO 2 vs dominated by heterocycles under N 2 /O 2). Altogether, the present study demonstrates the necessity to take into account the nature of the gas phase composition when experimentally simulating fossilization processes aiming at better constraining which biosignatures may be preserved in ancient rocks. Finally, the experimental results reported here may serve to identify the potential biosignatures that should be searched for on other planetary bodies

    Experimental clues for detecting biosignatures on Mars

    No full text
    Forthcoming exploration of Mars aims at identifying fossil biosignatures withinancient clay-rich formations. The subsurface of Mars has mostly acted as a giantfreezer for the last 4 Gyr, thereby preserving potential remains of martian life.Yet, volcanism and impactors have periodically triggered the circulation of hydrothermalfluids, inevitably causing alteration of potentially fossilised biogenicorganic materials. It thus appears crucial to quantify the impact of hydrothermalprocesses on organic biogeochemical signals in the presence of clay minerals.Here, we submitted RNA to hydrothermal conditions in the presence of Mg-smectites.Results show heterogeneous organo-mineral residues, with sub-micrometricphosphates, carbonates and amorphous silica particles together withMg-smectites with interlayer spaces saturated by N-rich organic compounds.Although the chemical structure of RNA did not withstand hydrothermal conditions,clay minerals efficiently trapped organic carbon, confirming the relevanceof drilling for organic carbon in ancient martian sediments. In addition, thedegradation of RNA in the presence of Mg-smectites led to the precipitation of a quite uncommon mineral assemblage thatcould be seen as a biosignature per se. Martian targets exhibiting this mineral assemblage will thus constitute high priorityand highly relevant candidates for sample return
    • 

    corecore