455 research outputs found

    Galactic Globular Cluster Stars: from Theory to Observation

    Get PDF
    We use evolutionary calculations presented in a recent paper (Cassisi et al. 1998) to predict B,V,I magnitudes for stars in galactic globulars. The effect of the adopted mixing length on stellar magnitudes and colors is discussed, showing that the uncertainty on such a theoretical parameter prevents the use of MS stars as bona fide theoretical standard candles. However, comparison with Hipparcos data for field subdwarfs discloses a substantial agreement between theory and observation. Present predictions concerning the magnitude of TO and of HB stars are compared with similar results appeared in the recent literature. We present and discuss a theoretical calibration of the difference in magnitude between HB and TO as evaluated with or without element sedimentation. Finally we use theoretical HB magnitudes to best fit the CM diagram of M68 and M5, taken as representative of metal poor and intermediate metallicity galactic globulars, deriving an age of 11±\pm1.0 Gyr and 10±\pm1.0 Gyr, respectively, for the adopted chemical compositions, plus an additional uncertainty of ±\pm1.4 Gyr if the uncertainty on the chemical composition is taken into account. This result is discussed on the basis of current evaluations concerning cluster ages and distance moduli.Comment: 8 pages, 13 postscript figures, 6 postscript tables To be published on Astronomy & Astrophysics Supplement Serie

    Helioseismic constraints to the central solar temperature and neutrino fluxes

    Get PDF
    The central solar temperature T and its uncertainties are calculated in helioseismologically-constrained solar models. From the best fit to the convective radius, density at the convective radius and seismically determined helium abundance the central temperature is found to be T=1.58x10^7 K, in excellent agreement with Standard Solar Models. Conservatively, we estimate that the accuracy of this determination is Delta T/T=1.4 %, better than that in SSM. Neutrino fluxes are calculated. The lower limit to the boron neutrino flux, obtained with maximum reduction factors from all sources of uncertainties, is 2 sigma higher than the flux measured recently by SuperKamiokande

    Bayesian inference of solar and stellar magnetic fields in the weak-field approximation

    Full text link
    The weak-field approximation is one of the simplest models that allows us to relate the observed polarization induced by the Zeeman effect with the magnetic field vector present on the plasma of interest. It is usually applied for diagnosing magnetic fields in the solar and stellar atmospheres. A fully Bayesian approach to the inference of magnetic properties in unresolved structures is presented. The analytical expression for the marginal posterior distribution is obtained, from which we can obtain statistically relevant information about the model parameters. The role of a-priori information is discussed and a hierarchical procedure is presented that gives robust results that are almost insensitive to the precise election of the prior. The strength of the formalism is demonstrated through an application to IMaX data. Bayesian methods can optimally exploit data from filter-polarimeters given the scarcity of spectral information as compared with spectro-polarimeters. The effect of noise and how it degrades our ability to extract information from the Stokes profiles is analyzed in detail.Comment: 16 pages, 5 figures, accepted for publication in Ap

    Single mode terahertz quantum cascade amplifier

    Get PDF
    A terahertz (THz) optical amplifier based on a 2.9 THz quantum cascade laser (QCL) structure has been demonstrated. By depositing an antireflective coating on the QCL facet, the laser mirror losses are enhanced to fully suppress the lasing action, creating a THz quantum cascade (QC) amplifier. Terahertz radiation amplification has been obtained, by coupling a separate multi-mode THz QCL of the same active region design to the QC amplifier. A bare cavity gain is achieved and shows excellent agreement with the lasing spectrum from the original QCL without the antireflective coating. Furthermore, a maximum optical gain of ∌30 dB with single-mode radiation output is demonstrated

    Single mode terahertz quantum cascade amplifier

    Get PDF
    A terahertz (THz) optical amplifier based on a 2.9 THz quantum cascade laser (QCL) structure has been demonstrated. By depositing an antireflective coating on the QCL facet, the laser mirror losses are enhanced to fully suppress the lasing action, creating a THz quantum cascade (QC) amplifier. Terahertz radiation amplification has been obtained, by coupling a separate multi-mode THz QCL of the same active region design to the QC amplifier. A bare cavity gain is achieved and shows excellent agreement with the lasing spectrum from the original QCL without the antireflective coating. Furthermore, a maximum optical gain of ∌30 dB with single-mode radiation output is demonstrated

    Helioseismology and standard solar models

    Get PDF
    We present a systematical analysis of uncertainties in the helioseismological determination of quantities characterizing the solar structure. We discuss the effect of errors on the measured frequencies, the residual solar model dependence and the uncertainties of the inversion method. We find Y_{ph}=0.238-0.259, Rb/R⊙=0.708−0.714R_b/R_\odot=0.708-0.714 and ρb=(0.185−0.199)\rho_b=(0.185-0.199) gr/cm^3 (the index b refers to the bottom of the convective envelope). In the interval 0.2<R/R⊙<0.650.2<R/R_\odot<0.65, the quantity U=P/\rho is determined with and accuracy of ±5\pm 5\permille or better. The predictions of a few recent solar model calculations are compared with helioseismological results.Comment: 16 pages, 4 tables and 5 ps figures, uses tighten.sty, aps.sty and revtex.st

    Superparamagnetic iron oxide nanoparticles for magnetic hyperthermia: recent advancements, molecular effects, and future directions in the omics era

    Get PDF
    Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted attention in the biomedical field thanks to their ability to prompt hyperthermia in response to an alternated magnetic field. Hyperthermia is well known for inducing cell death, in particular in tumour cells, which seem to have a higher sensitivity to temperature increases. For this reason, hyperthermia has been recommended as a therapeutic tool against cancer. Despite the potentialities of this approach, little is still known about the effects provoked by magnetic hyperthermia at the molecular level, and about the particular cell death mechanisms that are activated. Nevertheless, in-depth knowledge of this aspect would allow improvement of therapeutic outcomes and favour clinical translation. Moreover, in the last few decades, a lot of effort has been put into finding an effective delivery strategy that could improve SPION biodistribution and localisation at the action site. The aim of this review is to provide a general outline of magnetic hyperthermia, focusing on iron oxide nanoparticles and their interactions with magnetic fields, as well as on new strategies to efficiently deliver them to the target site, and on recent in vitro and in vivo studies proposing possible cell death pathways activated by the treatment. We will also cover their current clinical status, and discuss the contributions of omics in understanding molecular interactions between iron oxide nanoparticles and the biological environment

    Scattering polarization of hydrogen lines in the presence of turbulent electric fields

    Full text link
    We study the broadband polarization of hydrogen lines produced by scattering of radiation, in the presence of isotropic electric fields. In this paper, we focus on two distinct problems: a) the possibility of detecting the presence of turbulent electric fields by polarimetric methods, and b) the influence of such fields on the polarization due to a macroscopic, deterministic magnetic field. We found that isotropic electric fields decrease the degree of linear polarization in the scattered radiation, with respect to the zero-field case. On the other hand, a distribution of isotropic electric fields superimposed onto a deterministic magnetic field can generate a significant increase of the degree of magnetic-induced, net circular polarization. This phenomenon has important implications for the diagnostics of magnetic fields in plasmas using hydrogen lines, because of the ubiquitous presence of the Holtsmark, microscopic electric field from neighbouring ions. In particular, previous solar magnetographic studies of the Balmer lines of hydrogen may need to be revised because they neglected the effect of turbulent electric fields on the polarization signals. In this work, we give explicit results for the Lyman-alpha and Balmer-alpha lines.Comment: 15 pages, 6 figure
    • 

    corecore