We study the broadband polarization of hydrogen lines produced by scattering
of radiation, in the presence of isotropic electric fields. In this paper, we
focus on two distinct problems: a) the possibility of detecting the presence of
turbulent electric fields by polarimetric methods, and b) the influence of such
fields on the polarization due to a macroscopic, deterministic magnetic field.
We found that isotropic electric fields decrease the degree of linear
polarization in the scattered radiation, with respect to the zero-field case.
On the other hand, a distribution of isotropic electric fields superimposed
onto a deterministic magnetic field can generate a significant increase of the
degree of magnetic-induced, net circular polarization. This phenomenon has
important implications for the diagnostics of magnetic fields in plasmas using
hydrogen lines, because of the ubiquitous presence of the Holtsmark,
microscopic electric field from neighbouring ions. In particular, previous
solar magnetographic studies of the Balmer lines of hydrogen may need to be
revised because they neglected the effect of turbulent electric fields on the
polarization signals. In this work, we give explicit results for the
Lyman-alpha and Balmer-alpha lines.Comment: 15 pages, 6 figure