16 research outputs found

    Global loss of Bmal1 expression alters adipose tissue hormones, gene expression and glucose metabolism

    Get PDF
    Extent: 11p.The close relationship between circadian rhythm disruption and poor metabolic status is becoming increasingly evident, but role of adipokines is poorly understood. Here we investigated adipocyte function and the metabolic status of mice with a global loss of the core clock gene Bmal1 fed either a normal or a high fat diet (22% by weight). Bmal1 null mice aged 2 months were killed across 24 hours and plasma adiponectin and leptin, and adipose tissue expression of Adipoq, Lep, Retn and Nampt mRNA measured. Glucose, insulin and pyruvate tolerance tests were conducted and the expression of liver glycolytic and gluconeogenic enzyme mRNA determined. Bmal1 null mice displayed a pattern of increased plasma adiponectin and plasma leptin concentrations on both control and high fat diets. Bmal1 null male and female mice displayed increased adiposity (1.8 fold and 2.3 fold respectively) on the normal diet, but the high fat diet did not exaggerate these differences. Despite normal glucose and insulin tolerance, Bmal1 null mice had increased production of glucose from pyruvate, implying increased liver gluconeogenesis. The Bmal1 null mice had arrhythmic clock gene expression in epigonadal fat and liver, and loss of rhythmic transcription of a range of metabolic genes. Furthermore, the expression of epigonadal fat Adipoq, Retn, Nampt, AdipoR1 and AdipoR2 and liver Pfkfb3 mRNA were down-regulated. These results show for the first time that global loss of Bmal1, and the consequent arrhythmicity, results in compensatory changes in adipokines involved in the cellular control of glucose metabolism.David John Kennaway, Tamara Jayne Varcoe, Athena Voultsios, Michael James Bode

    Diversification across an altitudinal gradient in the Tiny Greenbul (Phyllastrephus debilis) from the Eastern Arc Mountains of Africa

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Eastern Arc Mountains of Africa have become one of the focal systems with which to explore the patterns and mechanisms of diversification among montane species and populations. One unresolved question is the extent to which populations inhabiting montane forest interact with those of adjacent lowland forest abutting the coast of eastern Africa. The Tiny Greenbul (<it>Phyllastephus debilis</it>) represents the only described bird species within the Eastern Arc/coastal forest mosaic, which is polytypic across an altitudinal gradient: the subspecies <it>albigula </it>(green head) is distributed in the montane Usambara and Nguru Mountains whereas the subspecies <it>rabai </it>(grey head) is found in Tanzanian lowland and foothill forest. Using a combination of morphological and genetic data, we aim to establish if the pattern of morphological differentiation in the Tiny Greenbul (<it>Phyllastrephus debilis</it>) is the result of disruptive selection along an altitudinal gradient or a consequence of secondary contact following population expansion of two differentiated lineages.</p> <p>Results</p> <p>We found significant biometric differences between the lowland (<it>rabai</it>) and montane (<it>albigula</it>) populations in Tanzania. The differences in shape are coupled with discrete differences in the coloration of the underparts. Using multi-locus data gathered from 124 individuals, we show that lowland and montane birds form two distinct genetic lineages. The divergence between the two forms occurred between 2.4 and 3.1 Myrs ago.</p> <p>Our coalescent analyses suggest that limited gene flow, mostly from the subspecies <it>rabai </it>to <it>albigula</it>, is taking place at three mid-altitude localities, where lowland and montane rainforest directly abut. The extent of this introgression appears to be limited and is likely a consequence of the recent expansion of <it>rabai </it>further inland.</p> <p>Conclusion</p> <p>The clear altitudinal segregation in morphology found within the Tiny Greenbul is the result of secondary contact of two highly differentiated lineages rather than disruptive selection in plumage pattern across an altitudinal gradient. Based on our results, we recommend <it>albigula </it>be elevated to species rank.</p
    corecore