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Global Loss of Bmal1 Expression Alters Adipose Tissue
Hormones, Gene Expression and Glucose Metabolism
David John Kennaway*, Tamara Jayne Varcoe, Athena Voultsios, Michael James Boden

Robinson Institute, University of Adelaide, Adelaide, South Australia, Australia

Abstract

The close relationship between circadian rhythm disruption and poor metabolic status is becoming increasingly evident,
but role of adipokines is poorly understood. Here we investigated adipocyte function and the metabolic status of mice with
a global loss of the core clock gene Bmal1 fed either a normal or a high fat diet (22% by weight). Bmal1 null mice aged 2
months were killed across 24 hours and plasma adiponectin and leptin, and adipose tissue expression of Adipoq, Lep, Retn
and Nampt mRNA measured. Glucose, insulin and pyruvate tolerance tests were conducted and the expression of liver
glycolytic and gluconeogenic enzyme mRNA determined. Bmal1 null mice displayed a pattern of increased plasma
adiponectin and plasma leptin concentrations on both control and high fat diets. Bmal1 null male and female mice
displayed increased adiposity (1.8 fold and 2.3 fold respectively) on the normal diet, but the high fat diet did not exaggerate
these differences. Despite normal glucose and insulin tolerance, Bmal1 null mice had increased production of glucose from
pyruvate, implying increased liver gluconeogenesis. The Bmal1 null mice had arrhythmic clock gene expression in
epigonadal fat and liver, and loss of rhythmic transcription of a range of metabolic genes. Furthermore, the expression of
epigonadal fat Adipoq, Retn, Nampt, AdipoR1 and AdipoR2 and liver Pfkfb3 mRNA were down-regulated. These results show
for the first time that global loss of Bmal1, and the consequent arrhythmicity, results in compensatory changes in adipokines
involved in the cellular control of glucose metabolism.
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Introduction

The links between circadian rhythms of gene expression,

hormone secretion and metabolism have emerged over recent

years. For example glucose metabolism changes across the day and

night in humans [1,2], while studies in animals have shown that

ablation of the suprachiasmatic nucleus (SCN), the brain region

responsible for the entrainment of physiological systems to the

light/dark cycle, results in the loss of the rhythms of glucose

tolerance [3]. Bmal1 (also known as Mop3 or Arntl1) [4] and Clock

[5] are recognised as critical components of cellular circadian

rhythm generation. The BMAL1/CLOCK heterodimeric protein

induces other clock genes (e.g., Per1, Per2, Cry1, Cry2, Nr1d1) upon

binding to E-box elements in the promoters of the genes. After

complexing with Casein kinase 1e/d, the PER/CRY/Casein

kinase complex returns to the nucleus and inhibits the action of

BMAL1/CLOCK, thus reducing the expression of the period and

cryptochrome genes. NR1D1 plays an important role in the

generation of rhythmicity through its repression of Bmal1

expression. We [6,7] and others [8–11] have shown that disruption

of endogenous cellular rhythmicity via mutation of Clock is

associated with alterations in metabolism. The ClockD19 mutants

produce a protein that can bind to BMAL1, but not induce gene

expression, resulting in a loss of rhythmic gene expression in

peripheral tissues, but not the SCN [12]. This mutation has been

shown to be associated with obesity [10], hyperinsulinaemia [10],

decreased glucose tolerance [7,11], increased insulin sensitivity

[7,11], hyper-lipidaemia, and decreased plasma free fatty acids [7].

The mutant phenotype does, however, depend upon the

background strain of the mice studied. It is known that some of

the functions of Clock in certain tissues (e.g., brain) are rescued in

ClockD19 mutant mice and Clock null mice by a homologue, Npas2

[13–15]. The metabolic consequences of global rhythm disruption

have been studied by several laboratories, but there are still large

gaps in our knowledge. The best candidate for investigating global

arrhythmia is the Bmal1 null mouse, originally produced by the

Bradfield laboratory [4], with another line reported recently in

Japan [16]. Unlike ClockD19 mutant or Clock null mice, Bmal1 null

mice have poorly entrained wheel running behaviour under a

normal photoperiod and are arrhythmic in continuous darkness

[4]. Moreover, there is no evidence that Bmal2 rescues the

functions of Bmal1 in the Bmal1 null mouse [4,17]. Interestingly

Bmal1 null mice are infertile [18,19] and as they age, develop a

range of physiological deficits including arthropathy [20] and

altered cardiovascular function [21].

In this study we report for the first time the effects of loss of

Bmal1 expression on plasma adipokine levels (adiponectin and

leptin) and adipose tissue expression of adiponectin (Adipoq), leptin

(Lep), resistin (Retn) and visfatin (Nampt) mRNA in young animals (2

months of age), before any confounding pathology was likely to

emerge. In addition we report the effects of global loss of Bmal1

expression on glucose, insulin and pyruvate tolerance tests and

expression of liver glycolytic and gluconeogenic enzyme mRNA.
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Finally we investigated the metabolic impact of a high fat diet on

body and adipose tissue weight, plasma metabolites, insulin and

adipokines in Bmal1 null mice.

Methods

The founder Bmal1 null mice [4] were generously provided by

Dr C Bradfield (University of Wisconsin Medical School,

Madison, WI, USA) and were subsequently maintained as a

heterozygous line on the original mixed background (C57Bl/6 and

129/SV). The study was approved by the Animal Ethics

Committee of the University of Adelaide. Animals were main-

tained on a 12 h light:12 h darkness photoperiod (lights off at

2000 h) in the University of Adelaide Medical School Specific

Pathogen Free Animal House, and were provided with the control

diet of standard mouse chow (7% fat (wt/wt), Ridley AgriProducts,

Melbourne, Australia) and water ad libitum. The genotypes of the

offspring were determined as previously described by PCR of tail

DNA [4].

Groups of Bmal1 null male mice and their wild-type litter mate

controls (4 mice per time point) were killed by decapitation at 2

months of age every four hours across 24 hours at 0800 h, 1200 h,

1600 h, 2000 h, 2400 h and 0400 h. Blood was collected into

heparinised tubes and plasma harvested for metabolite and

hormone assays. Liver and epigonadal fat were rapidly dissected

and immediately placed in RNAlaterH (Ambion, Austin, TX) and

then stored at 220uC until processing. An additional group of 6

month old male Bmal1 null and wild-type mice (4–9 mice per time

point) were killed at the same times of day and blood collected.

To determine the effects of a high-fat diet on plasma hormones

and metabolites, male and female Bmal1 null and wild-type mice

were fed a high-fat diet (22% fat (wt/wt), 0.15% cholesterol,

4.6 kcal/g, SF00-219, Specialty Feeds, Glen Forrest, Western

Australia) or the control diet from 3 to 8 weeks of age (n = 10–

19 mice of each sex per genotype). Animals were weighed and

killed during the mid light period (1400 h), trunk blood collected

and the epigonadal/retroperitoneal fat pads, testes/uteri and

kidneys were dissected and weighed.

Intraperitoneal Glucose Tolerance Test
Wild-type and Bmal1 null male mice aged 2 and 6 months

(n = 5–6) were maintained on the control diet, fasted overnight and

injected with glucose (1 mg/g body weight; i.p.; Sigma Chemical,

St Louis, MO) starting 2 h after the lights were turned on as

previously described [7]. Blood was obtained from the tail vein

before and 30 and 60 minutes after glucose administration for the

determination of blood glucose.

Intraperitoneal Pyruvate Tolerance Test
Wild-type and Bmal1 null 2 month old male mice (n = 6) and

female mice (n = 5–7) were maintained on the control diet, fasted

overnight and injected with sodium pyruvate (2 mg/g body

weight; i.p.; Sigma Chemical, St Louis, MO) starting 2 h after the

lights were turned on as previously described [22]. Blood was

obtained from the tail vein before and 15, 30, 60, 90, 120 minutes

after pyruvate administration for the determination of blood

glucose.

Intraperitoneal Insulin Tolerance Test
Wild-type and Bmal1 null male and female mice (n = 6 per

gender) aged 2 months were maintained on the control diet and

had food withheld for 2 hours before injection of insulin (0.75 IU/

kg body weight; Actrapid; Novo Nordisk Pharmaceuticals Pty.

Ltd., Baulkham Hills, Australia) 2–3 h after lights on as previously

described [7]. Blood was obtained from the tail vein before and 30,

60, 90 and 120 minutes after insulin administration for the

determination of blood glucose.

Real-time RT-PCR
To investigate the expression of clock and clock controlled genes

in the liver and adipose tissue total mRNA was extracted, reverse

transcribed and amplified by real time PCR. Some of the primers

have been used previously by our group [6,13], but for

completeness all primers used have been listed in Table 1. The

calibrator sample was designated as the most highly expressed time

point for each gene of interest in the wild-type mice and given a

relative expression of 1.

Hormone and Metabolite Assays
Plasma glucose and free fatty acids were measured enzymat-

ically [7]. Plasma triglycerides were measured with a Hitachi

912 automated sample system using a kit as per the

manufacturer’s instructions (Roche Diagnostics, Australia). Plas-

ma insulin, adiponectin and leptin were assayed by radioim-

munoassay [7].

Statistics
Hormone, body weight, organ weight and gene expression data

were analyzed by univariate ANOVA (SPSS v17), using genotype

and time of day as the dependent variables followed by post hoc

analysis using the Bonferroni correction for multiple comparisons.

For the body composition, hormone and gene expression data

collected across 24 h, the Estimated Marginal Means are reported

in the text for the various comparisons. To determine whether

hormone and gene expression data were rhythmic, i.e., fitted a

sine curve, the data were analyzed using CircWaveBatch; http://

hutlab.nl/[23].

Results

Plasma Glucose, Free Fatty Acids and Hormones
Plasma glucose and free fatty acids were not different

between wild-type and Bmal1 null mice, however, plasma

insulin was lower (P,0.02) and adiponectin (P,0.001) and

leptin (P,0.001) were higher in Bmal1 null compared to wild-

type mice (Fig. 1).

Similar differences in plasma insulin and adipokines between

Bmal1 null mice and wild-type mice were observed in 6 month old

mice. In particular the Bmal1 null mice had lower plasma insulin

(1.0260.12 ng/ml in wild-type mice vs. 0.3160.12 ng/ml in

Bmal1 null mice), higher adiponectin (5.960.8 mg/ml in wild-type

mice vs.15.760.8 mg/ml in Bmal1 null mice) and higher leptin

(0.860.1 ng/ml in wild-type mice vs. 2.860.2 ng/ml in Bmal1

null mice) than wild-type mice.

In summary, across 24 hours, plasma insulin was lower and

adiponectin and leptin were both higher in 2 month old male

Bmal1 null mice compared to wild-type mice while plasma glucose

and free fatty acids were unchanged. These differences persisted in

6 month old mice.

Intraperitoneal Glucose Tolerance Tests
At 2 and 6 months of age, male Bmal1 null and wild-type mice

had similar fasting blood glucose (data not shown). The peak

glucose levels and area under the curve during the glucose

tolerance tests in wild-type and Bmal1 null mice at 2 and 6 months

of age were not different (data not shown).

Adipokines in Bmal1 Null Mutants
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Intraperitoneal Insulin Tolerance Tests
At 2 months of age, male Bmal1 null mice had a trend to

decreased blood glucose (P = 0.06; Fig. S1) prior to the insulin

injection, but the subsequent decrease was similar for the wild-type

and Bmal1 null mice. Furthermore, both groups had a similar

counter-regulatory rebound of blood glucose. Similarly there was

no difference in the glucose response to insulin in female wild-type

and Bmal1 null mice.

Intraperitoneal Pyruvate Tolerance Tests
At 2 months of age, administration of pyruvate resulted in

increased blood glucose levels in both male and female Bmal1 null

mice compared to wild type mice (Fig. 2). The blood glucose levels

failed to return to the baseline within 120 minutes in either the

wild-type or Bmal1 null mice, but was significantly higher at 120

minutes post injection in Bmal1 null mice compared to wild-type

mice males (P,0.05), but not females.

Effect of a High Fat Diet on Body Weight and Fat Depots
Following five weeks on the control diet, body weight of the

male Bmal1 null mice were 14% lower than wild-type mice

(P,0.005). On the high fat diet, male Bmal1 null mice gained

weight such that they were no longer lighter than wild type mice

(Fig. 3). Wild type mice had increased epididymal and retroper-

itoneal fat pads when placed on a high fat diet (P,0.001), while in

the Bmal1 null mice only the epididymal fat pads were increased

for animals on the high fat diet (P,0.001). Male Bmal1 null mice

had 58% and 52% more epigonadal fat and 182% and 64% more

Table 1. Primers used.

Gene
Gene
symbol

Accession
Number Primers Amplicon Length

b-actin b-actin NM031144 F CCTCTGAACCCTAAGGCCAA 90 bp

R AGCCTGGATGGCTACGTACA

Adiponectin Adipoq NM_009605 F TGTTGGAATGACAGGAGCTGAA 104 bp

R CACTGAACGCTGAGCGATACA

Adiponectin receptor 1 AdipoR1 NM_028320 F GGAGGGACGTTGGAGAGTCAT 105 bp

R GCCCGAAAGGAGGGCATA

Adiponectin receptor 2 AdipoR2 NM_197985 F GCTCCTACAGGCCCATCATG 103 bp

R CCAATCCGGTAGCACATCGT

Bmal1 Bmal1 AB015203 F GTCGAATGATTGCCGAGGAA 101 bp

R GGGAGGCGTACTTGTGATGTTC

Fructose-1,6-bisphosphatase 1 Fbp1 NM_019395 F CCCGTCCATTGGAGAATTCAT 101 bp

R GGTCAAAGTCCTTGGCATAACC

Glucokinase Gck NM_010292 F TTTGTGTCGCAGGTGGAGAG 102 bp

R CACAATGTCGCAGTCGGC

Glucose-6-phosphatase G6pc NM_008061 F CTTAAAGAGACTGTGGGCATCAA 101 bp

R AATACGGGCGTTGTCCAAAC

Leptin Lep NM_008493 F CAGCCTGCCTTCCCAAAA 137 bp

R CATCCAGGCTCTCTGGCTTCT

Nuclear receptor subfamily 1,
group D, member 1 (Rev erb a)

Nr1d1 NM_145434 F TCCAGTACAAACGGTGTCTGAA 101 bp

R GCCAACGGAGAGACACTTCTTG

Period2 Per2 NM_011066 F AGGCACCTCCAACATGCAA 140 bp

R GGATGCCCCGCTTCTAGAC

Peroxisome proliferator-activated
receptor gamma

Pparc NM_011146 F CGCTGATGCACTGCCTATGA 101 bp

R AGAGGTCCACAGAGCTGATTCC

6-phosphofructo-2-kinase/
fructose-2,6-biphosphatase 3

Pfkfb3 NM_133232 F GCAAGAAGTTCGCCAATGC 103 bp

R TCCGCGGTCTGAATGGTACT

Phosphoenolpyruvate
carboxykinase 1

Pck1 NM_011044 F GTTCCCAGGGTGCATGAAAG 107 bp

R AGGGCGAGTCTGTCAGTTCAA

Resistin Retn NM_022984 F CCTTTTCTTCCTTGTCCCTGAA 101 bp

R ACAGGGAGTTGAAGTCTTGTTTGAT

Visfatin Nampt NM_021524 F TTTTGAACACATAGTAACACAGTTCTCATC 101 bp

R GGTCTTCACCCCATATTTTCTCA

doi:10.1371/journal.pone.0065255.t001
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retroperitoneal fat per gram of body weight than wild-type mice

maintained on the normal chow and high fat diet respectively

(P,0.001). When the epigonadal and retroperitoneal fad pad

weights were combined, male Bmal1 null mice had 1.8 fold more

fat than the wild-type mice on the chow diet and 1.5 fold more

when on the high fat diet. Testes weight in male Bmal1 null mice

were reduced compared to the wild type mice only when

maintained on the chow diet (P,0.001) and kidney weight in

the Bmal1 null males was reduced compared to wild type on both

diets (P,0.01).

Body weights of female Bmal1 null mice on a high fat diet were

increased when compared to chow fed Bmal1 females and wild

type females placed on a high fat diet (Fig. 3, P,0.01). Female

Bmal1 null mice had 141% and 117% more epigonadal fat per

gram of body weight than wild-type mice maintained on the

normal chow and high fat diet respectively (P,0.001). Bmal1 null

mice on a high fat diet had more retroperitoneal fat compared to

high fat diet wild type mice (P,0.001) and there was a trend for

increased adiposity compared to wild type for Bmal1 null mice on a

chow diet and when comparing Bmal1 null females on a high fat vs

chow diet (P = 0.016 and P = 0.014 respectively). When the

epigonadal and retroperitoneal fad pad weights were combined,

female Bmal1 null mice had 2.3 fold more fat than the wild-type

mice on the chow diet and 2.3 fold more when on the high fat diet.

While showing a trend to smaller uteri in chow fed animals

(P = 0.018), female Bmal1 null mice uteri were not lighter than

wild-type mice maintained on the normal chow or high fat diet

(P.0.05), nor were kidney weights effected.

In summary, male Bmal1 null mice weighed less than wild-type

mice when maintained on the chow diet but caught up when

placed on the high fat diet, whereas female Bmal1 null mice had

Figure 1. Plasma metabolites, insulin, and adipokines in
8 week old wild-type and Bmal1 null mice. Plasma glucose (a),
free fatty acids (b), insulin (c), adiponectin (d) and leptin (e) levels. Data
are the mean 6 s.e.m. for n = 4 mice of each genotype at each time
point, wild-type mice (open circles) and Bmal1 null mice (closed circles).
The accompanying histograms represent the estimated marginal means
6 s.e.m. of the individual gene expression as calculated from the
ANOVA. The shaded areas represent the period of darkness. The symbol
* indicates that there was a significant difference (P,0.05) between the
genotypes.
doi:10.1371/journal.pone.0065255.g001

Figure 2. The blood glucose response to the intra peritoneal
administration of pyruvate (2 mg/g) to male and female wild-
type and Bmal1 null mice fed a normal rodent diet. The mean 6

s.e.m. plasma glucose levels are shown for male (a) and female (c) wild-
type (open circles) and Bmal1 null (closed circles) mice. The mean area
under the curve (6 SEM) of the plasma glucose profiles up to 120 min
post injection (b, d).
doi:10.1371/journal.pone.0065255.g002
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comparable body weight on a normal chow diet, but weighed

more when maintained on a high fat diet compared to chow fed

Bmal1 null mice or high fat fed wild type mice. For both control

and high fat diets, Bmal1 null male and female mice had a greater

degree of adiposity than wild type mice.

Effect of a High Fat Diet on Plasma Metabolites and
Hormones at Mid-light

When the male mice were killed at mid-light (1400 h), there was

no difference in plasma glucose, free fatty acids and insulin

between wild-type and Bmal1 null mice, however, plasma

triglyceride (78% and 72%) and adiponectin (91% and 51%)

were increased in Bmal1 null mice on chow diet and high fat diet

respectively (Fig. 4; P,0.01). The high fat diet did not affect

plasma glucose, triglyceride or adiponectin, but increased circu-

lating NEFA (by 70%) and insulin (by 165%) in the wild type mice.

Plasma leptin was increased in Bmal1 compared to wild types on

chow diet, and between chow and high fat fed wild type mice

(P,0.001).

When the female mice were killed at mid-light (1400 h), there

was no difference in plasma glucose, NEFA and insulin between

wild-type and Bmal1 null mice, however adiponectin (by 63%) and

leptin (by 56%) were increased in Bmal1 null mice on chow diet,

and plasma triglyceride was increased in Bmal1 null mice on both

chow (33%) and high fat diets (by 33% and 60% respectively,

P,0.01). The high fat diet did not affect plasma glucose,

triglyceride or adiponectin, but increased NEFA in the wild type

(72%) and Bmal1 null mice (38%), increased circulating insulin by

77% in wild type mice and increased circulating leptin in both wild

type and Bmal1 null mice (139% and 108% respectively, P,0.01).

Epigonadal Fat Gene Expression
In the epigonadal fat, overall expression of Per2 (230%), Pparc

(24%), Nr1d1 (298%), Adipoq (231%), Retn (229%), Nampt

(252%), Adipor1 (216%) and Adipor2 (235%) mRNA was

decreased (P,0.05), but Lep mRNA was unchanged (P.0.05) in

male Bmal1 null mice compared to the wild-type mice (Fig. 5).

Expression of Bmal1, Per2, Pparc, Nr1d1, Adipoq, Lep, Adipor1 and

Adipor2 mRNA was rhythmic in wild-type mice (fitted significantly

to a sine curve), but Retn and Nampt mRNA expression was

arrhythmic. Expression of all genes analysed in male Bmal1 null

mice was arrhythmic except for Lep mRNA (P,0.05).

Liver Gene Expression
In the liver overall Per2, Pck1 (phosphoenolpyruvate carboxykinase 1),

Fbp1 (fructose-1,6-bisphosphatase 1), G6pc (glucose-6-phospha-

tase ), Gck (glucokinase) and Adipor2 mRNA expression did not vary

with genotype, whereas Pfkfb3 (6-phosphofructo-2-kinase/fruc-

tose-2,6-biphosphatase 3) mRNA was decreased by 25% in male

Bmal1 null mice compared to wild type mice (Fig. 6; P,0.05).

Bmal1, Per2, Pfkfb3, Pck1, Fbp1 and Gck mRNA was expressed

rhythmically in the wild type mice (P,0.05), whereas G6pc and

Adipor2 mRNA expression was arrhythmic. Expression of all

genes analysed in male Bmal1 null mice was arrhythmic.

The gene expression levels for the genes involved in the

glycolysis and gluconeogenesis pathways (Gck, Pck1, Pfkfb3, Fbp1

and G6pc) were also analysed (ANOVA) using only the 0800 h and

1200 h time points (light period), the time around which the

glucose and insulin tolerance tests were performed. In contrast to

the 24 hour analysis, expression of Gck and G6pc were increased

1.7 fold (P = 0.05) and 1.6 fold (P = 0.09) respectively in Bmal1 null

mice at these times.

In summary, across 24 hours, Pfkfb3 mRNA was decreased, but

expression of Per2, Gck, Pck1, Fbp1, G6pc and Adipor2 mRNA was

unchanged. Expression of Gck and G6pc mRNA was increased

during the early light period. The rhythm of expression of Per2,

Pfkfb3, Pck1, Fbp1 and Gck mRNA evident in wild-type mice was

absent in male Bmal1 null mice.

Discussion

In this study we show for the first time that global disruption of

gene rhythmicity in both male and female Bmal1 null mice alters

plasma levels of adiponectin and leptin and adipokine gene

expression (Adipoq, Nampt and Retn mRNA). At 2 and 6 months of

age, plasma adiponectin and leptin were higher in Bmal1 null mice

than wild-type mice. Although tending to weigh less than the wild-

type mice, Bmal1 null mice had a greater degree of adiposity

(1.8 fold and 2.3 fold more fat in males and females respectively).

Adipoq, Nampt and Retn mRNA expression was reduced in Bmal1 null

compared to the wild-type mice, but their increased adiposity is

consistent with the increased secretion of these adipokines. We

were not able to measure plasma resistin or visfatin in this study

due to the limited volume of plasma available for assay.

The ‘‘Western diet’’ (containing 22% fat and 0.15% cholesterol)

used in this study was chosen as we wished to challenge the

homeostasis of the Bmal1 null mice and observe initial stages of loss

of metabolic control, which may have been obscured with a more

extreme and less physiological diet. When the mice were fed the

diet for 5 weeks, the differences in adiposity between the Bmal1

null and wild-type mice was maintained but not increased,

suggesting the Bmal1 null mice are not more sensitive to this

metabolic challenge. There was a pattern towards a small increase

in body weight in Bmal1 null mice in response to 5 weeks on the

high fat diet, with minimal change in the wild type mice. This was

not unexpected given the moderate challenge of the diet, however

both Bmal1 null and wild type mice increased their adiposity by

approximately 50%. Both lines showed signs of increasing their

plasma free fatty acids and leptin to a similar extent on the diet. In

previous studies, the body weight of comparable age Bmal1 null

mice has been reported as normal [24,25], increased [26] or

decreased [16,27,28]. Similarly the increased adiposity observed

here has been reported previously in some studies, [24,26,28], but

not by others [4,16,29].

In this study, plasma insulin (calculated across 24 hours) was

decreased in male Bmal1 null mice at 2 and 6 months of age, which

is consistent with the decreased glucose stimulated insulin section

reported by 3 independent groups [11,16,25]. Accompanying the

secretory defect, glucose intolerance was reported in 2 studies

[11,25] while in another study there was decreased plasma insulin

and increased glucose tolerance [24]. We observed neither glucose

intolerance nor altered whole body insulin sensitivity in Bmal1 null

mice. A possible explanation for the normal glucose despite

decreased insulin secretion in Bmal1 null mice may relate to the

elevated plasma adiponectin which is known to be an insulin

sensitising adipokine [30]. In previous studies in our laboratory we

Figure 3. The body composition of male and female wild-type and Bmal1 null mice fed either normal rodent chow or a high fat diet
(22% fat). The data are the means (grams or grams per 20 grams body weight 6 s.e.m.; n = 13–19 mice per group). Body weight (a, b), epigonadal
fat pad (c, d), retroperitoneal fat pad (e, f), testis/uterus (g, h) and kidney (i, j). Males (a, c, e, g, i); females (b, d, f, h, j). Bars above the histogram define
the difference between the groups with significant difference set to P,0.0125.
doi:10.1371/journal.pone.0065255.g003
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found that Clock D19+MEL mutant mice [12] had low/normal

plasma glucose and insulin, but were glucose intolerant and insulin

sensitive [7]. They also had elevated plasma adiponectin levels and

Adipoq mRNA expression, but unlike the Bmal1 null mice, did not

show increased adiposity [6]. We hypothesise that both the Clock
D19+MEL mutant and Bmal1 null mice have adapted to a

pancreatic insulin secretory defect by altering the levels of

adipokines that modulate insulin sensitivity (adiponectin), to

maintain glucose homeostasis. Interestingly, Clock D19+MEL

mutant mice had low plasma free fatty acids [7] which would

also be expected to improve insulin sensitivity, but Bmal1 null mice

did not exhibit this phenotype.

Bmal1 null mice did not express Per2 mRNA rhythmically in the

liver in contrast to the wild-type mice. These results confirm the

original observations, that disruption of Bmal1 interferes with

circadian rhythm generation [4]. Expression of several of the genes

for enzymes involved in glycolysis and gluconeogenesis (Pfkfb3, Pck,

Fbp1, and Gck) were rhythmic in wild-type, but not Bmal1 null

mice. When analysed across 24 hours, the overall expression of

these genes was not altered, except for Pfkfb3 mRNA expression,

which was reduced. Expression of Pck and Fbp1 mRNA prior to

darkness was clearly reduced in the Bmal1 null mice, perhaps

reflecting a change in feeding pattern caused by the loss of

rhythmicity.

The observation in the current study that Bmal1 null mice have

increased pyruvate tolerance was unexpected because a previous

study reported that the loss of Bmal1 resulted in decreased pyruvate

tolerance when the test was conducted 7 hours after expected

lights on (ZT7) [9]. No measurements of either the expression of

genes involved in gluconeogenesis or enzyme activity were

reported and it was not clear what control strain was used.

Nevertheless it was concluded that gluconeogenesis was abolished

by deletion of Bmal1. More recently Shimba et al. [16] reported

that the peak blood glucose level was significantly higher and the

clearance was slower in Bmal1 null mice, as compared to those in

control mice following a pyruvate challenge test, similar to that

observed here. However, Shimba et al. [16] reported that the

expression of G6pc and Fbp mRNA in the liver was increased in the

Bmal1 null mice and that liver glucose-6 phosphate was

significantly higher than that of control mice, whereas we found

the overall 24 hour expression of Pfkfb3 mRNA to be lower in the

Bmal1 null mice, particularly during the 4 hours before lights off.

This discrepancy may be explained by the fact that in the Shimba

et al. study [16] the gene analyses were conducted on animals that

had been fasted for 16 hours prior to tissue collection at ZT10 (2

hours before lights off). In the current study, we collected livers at

6 time points over 24 hours from animals fed ad libitum. We found

a trend (P = 0.09; 2-way ANOVA) for higher G6pc mRNA

expression in the livers of Bmal1 null mice at 0800 h and

1200 h, the time at which the pyruvate tolerance tests were

conducted. Thus these results may explain the increase in glucose

conversion in male and female Bmal1 null mice over the wild type

mice. The failure of the gene expression data to reach significance

in the sub analysis of the 0800 h and 1200 h time points probably

reflects the lower power. Future studies on the impact of loss of

Bmal1 on gluconeogenesis should carefully control the time of day

and feed access that the analyses are conducted and in addition

assess possible changes in enzyme activity.

The observation of increased adiposity in Bmal1 null mice on

normal chow confirms 3 recent reports [16,24,28]. While this may

be considered confirmatory evidence that disrupted circadian

rhythmicity results in obesity as previously hypothesised on the

basis of a study in Clock D19 (C57Bl/6) mice [10], there are some

caveats to be considered. First the Clock D19+MEL mice [12] which

are on a CBA background do not have an obese phenotype nor do

they become disproportionately fat when fed a high fat diet [6].

Second, the adipokine profile of the Bmal1 null mice is not typical

since both adiponectin and leptin are elevated. In the case of Clock

Figure 4. The plasma metabolites and adipokines of male and
female wild-type and Bmal1 null mice fed either normal rodent
chow or a high fat diet. The data are the means 6 s.e.m. (n = 9–
19 mice per group). Plasma glucose (a, b), triglycerides (c, d), free fatty
acids (e, f), insulin (g, h), adiponectin (i, j) and leptin (k, l) levels. Males (a,
c, e, g, i); females (b, d, f, h, j). Bars above the histogram define the
difference between the groups with significant difference set to
P,0.0125.
doi:10.1371/journal.pone.0065255.g004
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Figure 5. The relative gene expression across 24 h of clock and other genes in the epigonadal adipose tissue of male wild-type and
Bmal1 null mice fed a normal rodent diet. (a) Bmal1, (b) Per2, (c) Pparc, (d) Nr1d1, (e) Adipoq, (f) Lep (g) Retn, (h) Nampt (i) Adipor1 and (j) Adipor2.
The data are the relative expression for each gene compared to Actin mRNA (mean 6 s.e.m., n = 4 for each genotype), wild-type mice (open circles)
and Bmal1 null mice (closed circles). The highest expression of each gene for wild-type mice was set at one. The apparent absence of an SEM bar
indicates that it is obscured by the symbol. The shaded areas represent the period of darkness.
doi:10.1371/journal.pone.0065255.g005
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D19+MEL mice, adiponectin is elevated but not leptin [6].

Adiponectin is normally low and leptin high in obese rodent

models. There was no change in adiponectin receptor mRNA

expression in liver, but both Adipor1 and Adipor2 mRNA expression

was decreased in epigonadal fat. This suggests that there are

important modifications in adipose tissue that develop in the

absence of Bmal1 or disrupted clock function when the defect is

present throughout life. Interestingly, the size of the adipocytes in

the wild-type and Bmal1 null mice were not different (data not

shown), suggesting that the lack of Bmal1 potentiated adipogenesis.

In the current study we identified a profound decrease in Nr1d1

mRNA expression in the epigonadal fat pads in Bmal1 null mice. It

is well established that CLOCK/BMAL1 heterodimers induce

Nr1d1 mRNA through interactions at an E-box on the promoter

[31]. Loss of either Clock or Bmal1 will reduce Nr1d1 mRNA

expression and eliminate its rhythmicity. Adipogenesis is char-

Figure 6. The relative gene expression across 24 h of clock and liver enzyme genes in the liver of male wild-type and Bmal1 null
mice fed a normal rodent diet. (a) Bmal1, (b) Per2, (c) Pfkfb3, (d) Pck, (e) Fbp1, (f) G6pc, (g) Gck and (h) Adipor2. The data are the relative expression
for each gene compared to Actin mRNA (mean 6 s.e.m., n = 4 for each genotype), wild-type mice (open circles) and Bmal1 null mice (closed circles).
The highest expression of each gene for wild-type mice was set at one. The apparent absence of an SEM bar indicates that it is obscured by the
symbol. The shaded areas represent the period of darkness.
doi:10.1371/journal.pone.0065255.g006
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acterised by high Nr1d1 mRNA expression [32,33] and Nr1d1

mRNA is induced by PPARc [34]. In Bmal1 null mice, loss of

rhythmic Nr1d1 resulted in arrhythmic Pparc expression but levels

of Pparc mRNA remained around the circadian nadir levels. The

high degree of adiposity in Bmal1 null mice would therefore

suggest that low constitutive expression of Nr1d1 may be sufficient

to allow adipogenesis and that its rhythmicity is not critical or that

the lipolytic pathways in Bmal1 null mice are also significantly

downregulated.

The metabolic phenotype of Bmal1 null mice is different from

that found in Clock D19 mutant mice on either C57Bl/6 [10], IRC

[8,35,36] or CBA [7] backgrounds. The metabolic phenotype of

ClockD19 mutants is one of obesity, hyper-insulinaemia, hyper-

lipidaemia, glucose intolerance and increased insulin sensitivity

[6,7,10,11], although not all metabolic alterations are observed in

mutants on all backgrounds. In the current study we used Bmal1

null mice that were maintained on a mixed background because

we did not wish to confound the impact of Bmal1 loss with other

metabolically important mutations present in inbred strains like

the C57/Bl6 mice [37]. We expected that the metabolic

consequences for global Bmal1 null mice with a complete lack of

central and peripheral rhythmicity would be exacerbated over and

above those observed in Clock D19 mutants. Bmal1 null mice do not,

however, show evidence of a major metabolic disorder. This is not

to say that Bmal1 null mice are normal, since they have a reduced

life expectancy [29], are prone to develop arthropathies [20] and

are infertile [18,19]. At least while they are maintained on ad

libitum feeding, Bmal1 null mice appear able to maintain normo-

glycaemia, despite hypertriglyceridaemia, hyperlipidaemia and

hyperleptinaemia. Interestingly despite this potential cardiovascu-

lar risk, Bmal1 null mice have recently been shown to be

hypotensive and have lower stress induced alterations in blood

pressure [21]. As in many other genetic animal models, Bmal1 null

mice appear to have compensated for the long term lack of Bmal1

and/or rhythmicity by altering a range of physiological systems

including adipose tissue growth, adipokine secretion and feeding

behaviour to maintain glucose homeostasis.

Our analyses of the metabolic parameters of the Bmal1 null

model do not discriminate between that caused by arrhythmicity

and any non-circadian functions of this gene. Nevertheless, there is

mounting evidence for a role of circadian rhythms in the

regulation of metabolic function, as demonstrated through a

variety of knock out and mutant mice models. Furthermore, from

our results, it is clear that removal of the Bmal1 gene leads to

cellular arrhythmicity of not only clock genes, but also genes

involved in key metabolic processes including adipogenesis and

gluconeogenesis. We believe therefore, that it is this circadian

arrhythmicity, at both the cellular and whole organism level, that

leads to the metabolic perturbations observed here, rather than

any non-clock function of Bmal1.

In summary, global loss of Bmal1, and the circadian arrhythmi-

city this creates, leads to increased adiposity when maintained on

both control and high fat diets. Furthermore, the Bmal1 null mice

displayed increased plasma adiponectin and leptin levels, despite

reduced or normal expression of Adipoq and Lep mRNA

respectively. Presumably the 1.8–2.3 fold increase in adiposity,

and hence the greater number of fat cells available for secretion of

these hormones, plays a role in the elevated concentrations in

plasma. Bmal1 null mice also displayed an elevated response to

pyruvate challenge, which when considered with the normal

glucose and insulin tolerance, suggest an increased capacity for

gluconeogenesis. Nevertheless, Bmal1 null mice display normal

profiles of plasma glucose. Finally the loss of adipocyte and hepatic

rhythmic gene expression and down-regulation of key metabolic

genes in both tissues emphasises further the regulatory role Bmal1

is able to play. Together these results demonstrate that disrupted

circadian rhythmicity leads to changes in adipocyte function and

compensatory changes in adipokines involved in the cellular

control of glucose metabolism, and provides further support for

the role of circadian rhythms in the regulation of metabolic

homeostasis.

Supporting Information

Figure S1 Blood glucose response to intraperitoneal
administration of insulin. Insulin (0.75 IU/kg) was injected

into wild-type (open circle) and Bmal1 null (closed circle) mice and

blood glucose measured over the subsequent 2 hours. Data are

mean 6 SEM (n = 6); (a) males, (b) females.

(TIF)
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