264 research outputs found

    Method for locating low-energy solutions within DFT+U

    Get PDF
    The widely employed DFT+U formalism is known to give rise to many self-consistent yet energetically distinct solutions in correlated systems, which can be highly problematic for reliably predicting the thermodynamic and physical properties of such materials. Here we study this phenomenon in the bulk materials UO_2, CoO, and NiO, and in a CeO_2 surface. We show that the following factors affect which self-consistent solution a DFT+U calculation reaches: (i) the magnitude of U; (ii) initial correlated orbital occupations; (iii) lattice geometry; (iv) whether lattice symmetry is enforced on the charge density; and (v) even electronic mixing parameters. These various solutions may differ in total energy by hundreds of meV per atom, so identifying or approximating the ground state is critical in the DFT+U scheme. We propose an efficient U-ramping method for locating low-energy solutions, which we validate in a range of test cases. We also suggest that this method may be applicable to hybrid functional calculations

    Invertible and Non-invertible Alloy Ising Models

    Full text link
    Physical properties of alloys are compared as computed from ``direct'' and ``inverse'' procedures. The direct procedure involves Monte Carlo simulations of a set of local density approximation (LDA)-derived pair and multibody interactions {\nu_f}, generating short-range order (SRO), ground states, order- disorder transition temperatures, and structural energy differences. The inverse procedure involves ``inverting'' the SRO generated from {\nu_f} via inverse-Monte-Carlo to obtain a set of pair only interactions {\tilde{\nu}_f}. The physical properties generated from {\tilde{\nu}_f} are then compared with those from {\nu_f}. We find that (i) inversion of the SRO is possible (even when {\nu_f} contains multibody interactions but {\tilde{\nu}_f} does not) but, (ii) the resulting interactions {\tilde{\nu}_f} agree with the input interactions {\nu_f} only when the problem is dominated by pair interactions. Otherwise, {\tilde{\nu}_f} are very different from {\nu_f}. (iii) The same SRO pattern can be produced by drastically different sets {\nu_f}. Thus, the effective interactions deduced from inverting SRO are not unique. (iv) Inverting SRO always misses configuration-independent (but composition- dependent) energies such as the volume deformation energy G(x); consequently, the ensuing {\tilde{\nu}_f} cannot be used to describe formation enthalpies or two-phase regions of the phase diagram, which depend on G(x).Comment: 4 pages, ReVTeX galley format, 1 eps figures embedded using epsf, to be published in Solid State Communication

    Reliable First-Principles Alloy Thermodynamics via Truncated Cluster Expansions

    Full text link
    In alloys cluster expansions (CE) are increasingly used to combine first-principles electronic-structure and Monte Carlo methods to predict thermodynamic properties. As a basis-set expansion in terms of lattice geometrical clusters and effective cluster interactions, the CE is exact if infinite, but is tractable only if truncated. Yet until now a truncation procedure was not well-defined and did not guarantee a reliable truncated CE. We present an optimal truncation procedure for CE basis sets that provides reliable thermodynamics. We then exemplify its importance in Ni3_3V, where the CE has failed unpredictably, and now show agreement to a range of measured values, predict new low-energy structures, and explain the cause of previous failures.Comment: 4 pages, 2 figure

    Self-driven lattice-model Monte Carlo simulations of alloy thermodynamic

    Get PDF
    Monte Carlo (MC) simulations of lattice models are a widely used way to compute thermodynamic properties of substitutional alloys. A limitation to their more widespread use is the difficulty of driving a MC simulation in order to obtain the desired quantities. To address this problem, we have devised a variety of high-level algorithms that serve as an interface between the user and a traditional MC code. The user specifies the goals sought in a high-level form that our algorithms convert into elementary tasks to be performed by a standard MC code. For instance, our algorithms permit the determination of the free energy of an alloy phase over its entire region of stability within a specified accuracy, without requiring any user intervention during the calculations. Our algorithms also enable the direct determination of composition-temperature phase boundaries without requiring the calculation of the whole free energy surface of the alloy system

    Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit

    Full text link
    A number of new functionalities have been added to the Alloy Theoretic Automated Toolkit (ATAT) since it was last reviewed in this journal in 2002. ATAT can now handle multicomponent multisublattice alloy systems, nonconfigurational sources of entropy (e.g. vibrational and electronic entropy), Special Quasirandom Structures (SQS) generation, tensorial cluster expansion construction and includes interfaces for multiple atomistic or ab initio codes. This paper presents an overview of these features geared towards the practical use of the code. The extensions to the cluster expansion formalism needed to cover multicomponent multisublattice alloys are also formally demonstrated.Comment: Code available from http://www.alum.mit.edu/www/avdw/ata

    First principles modelling of magnesium titanium hydrides

    Get PDF
    Mixing Mg with Ti leads to a hydride Mg(x)Ti(1-x)H2 with markedly improved (de)hydrogenation properties for x < 0.8, as compared to MgH2. Optically, thin films of Mg(x)Ti(1-x)H2 have a black appearance, which is remarkable for a hydride material. In this paper we study the structure and stability of Mg(x)Ti(1-x)H2, x= 0-1 by first-principles calculations at the level of density functional theory. We give evidence for a fluorite to rutile phase transition at a critical composition x(c)= 0.8-0.9, which correlates with the experimentally observed sharp decrease in (de)hydrogenation rates at this composition. The densities of states of Mg(x)Ti(1-x)H2 have a peak at the Fermi level, composed of Ti d states. Disorder in the positions of the Ti atoms easily destroys the metallic plasma, however, which suppresses the optical reflection. Interband transitions result in a featureless optical absorption over a large energy range, causing the black appearance of Mg(x)Ti(1-x)H2.Comment: 22 pages, 9 figures, 4 table

    Calculation of solubility in titanium alloys from first-principles

    Full text link
    We present an approach to calculate the atomic bulk solubility in binary alloys based on the statistical-thermodynamic theory of dilute lattice gas. The model considers all the appropriate ground states of the alloy and results in a simple Arrhenius-type temperature dependence determined by a {\it "low-solubility formation enthalpy"}. This quantity, directly obtainable from first-principle calculations, is defined as the composition derivative of the compound formation enthalpy with respect to nearby ground states. We apply the framework and calculate the solubility of the A specie in A-Ti alloys (A=Ag,Au,Cd,Co,Cr,Ir,W,Zn). In addition to determining unknown low-temperature ground states for the eight alloys, we find qualitative agreements with solubility experimental results. The presented formalism, correct in the low-solubility limit, should be considered as an appropriate starting point for determining if more computationally expensive formalisms are otherwise needed.Comment: 10 pages, 12 figure

    Using bond-length dependent transferable force constants to predict vibrational entropies in Au-Cu, Au-Pd, and Cu-Pd alloys

    Get PDF
    A model is tested to rapidly evaluate the vibrational properties of alloys with site disorder. It is shown that length-dependent transferable force constants exist, and can be used to accurately predict the vibrational entropy of substitutionally ordered and disordered structures in Au-Cu, Au-Pd, and Cu-Pd. For each relevant force constant, a length- dependent function is determined and fitted to force constants obtained from first-principles pseudopotential calculations. We show that these transferable force constants can accurately predict vibrational entropies of L12_{2}-ordered and disordered phases in Cu3_{3}Au, Au3_{3}Pd, Pd3_{3}Au, Cu3_{3}Pd, and Pd3_{3}Au. In addition, we calculate the vibrational entropy difference between L12_{2}-ordered and disordered phases of Au3_{3}Cu and Cu3_{3}Pt.Comment: 9 pages, 6 figures, 3 table

    The Alloy Theoretic Automated Toolkit: A User Guide

    Get PDF
    Although the formalism that allows the calculation of alloy thermodynamic properties from first-principles has been known for decades, its practical implementation has so far remained a tedious process. The Alloy Theoretic Automated Toolkit (ATAT) drastically simplifies this procedure by implementing decision rules based on formal statistical analysis that frees the researchers from a constant monitoring during the calculation process and automatically "glues" together the input and the output of various codes, in order to provide a high-level interface to the calculation of alloy thermodynamic properties from first-principles. ATAT implements the Structure Inversion Method (SIM), also known as the Connolly-Williams method, in combination with semi-grand-canonical Monte Carlo simulations. In order to make this powerful toolkit available to the wide community of researchers who could benefit from it, this article present a concise user guide outlining the steps required to obtain thermodynamic information from ab initio calculations.Comment: 15 pages, 4 figure
    • …
    corecore