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1. Introduction 

The worldwide demand for energy in the 21st century is growing at an alarming rate. The 
European “World Energy Technology and Climate Policy Outlook” [WETO] predicts an 
average growth rate of 1.8% per annum for the period 2000-2030 for the world energy 
demand (European Commission, 2003). The increased demand is being met largely by 
reserves of fossil fuel that emit both greenhouse gases and other pollutants. Since the rate of 
fossil fuel consumption is higher than the rate of fossil fuel production by nature, these 
reserves are diminishing and they will become increasingly expensive. 

Against this background, the transition towards a sustainable, carbon-free and reliable 
energy system capable of meeting the increasing energy demands becomes imperative. 
Renewable energy resources, such as wind, solar, water, wave or geothermal, can offer clean 
alternatives to fossil fuels. Despite of their obvious advantages renewable energy sources 
have also some drawbacks in their use because they are unevenly distributed both over time 
and geographically. Most countries will need to integrate several different energy sources 
and an advanced energy storage system needs to be developed.  

1.1 Hydrogen storage: A brief overview 

Hydrogen has also attracted intensive attention as the most promising secure energy carrier 
of the future (Jain, 2009) due to its prominent advantages such as being:  

1. Environmentally friendly. It is a “clean, green” fuel because when it burns in oxygen 
there is no pollutants release, only heat and water are generated:  

 2H2 (g) + O2 (g)  2H2O (g) , H = 120 kJ/g H2  (1) 

2. Easy to produce. Hydrogen is the most abundant element in the Universe and is found 
in great abundance in the world, allowing it to be produced locally and easily from a 
great variety of sources like water, biomass and organic matter; 
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3. Light. Hydrogen is the Nature’s simplest and lightest element with only one proton and 
one electron with high energy per unit mass. 

Nonetheless, opposing to the advantages of hydrogen as an energy carrier is the difficulty in 
storing it. Hydrogen storage remains a problem, in particular for mobile/vehicular 
applications (Felderhoff et al., 2007). High-pressure hydrogen gas requires very large 
volumes compared to petrol, for producing the same amount of energy. On the other hand, 
liquid hydrogen storage systems are not viable for vehicular applications due to safety 
concerns in addition to volumetric constraints. Thus, hydrogen storage viability has 
prompted an extensive effort to develop solid hydrogen storage systems but no fully 
satisfactory solutions have been achieved to date (Churchard et al., 2011). 

The goal is to find a material capable of simultaneously absorbing hydrogen strongly enough 
to form a stable thermodynamic state, but weakly enough to release it on-demand with a small 
temperature rise (Jeon et al., 2011) in a safe, compact, robust, and efficient manner. There have 
been many materials under development for solid hydrogen storage, including metal hydrides 
(MHx), via the chemical reaction of H2 with a metal or metal alloy (M):  

 (x/2) H2 (g) + M (s)  MHx (s) (2) 

Generally, a typical hydriding reaction is known to involve several steps: (1) gas permeation 
through the particle bed, (2) surface adsorption and hydrogen dissociation, (3) migration of 
hydrogen atoms from the surface into the bulk, (4) diffusion through the particle and finally 
(5) nucleation and growth of the hydride phase. Any delay in one of these steps will reduce 
the kinetic properties of the process (Schimmel et al., 2005). 

1.2 Magnesium hydride 

Magnesium-based hydrogen storage alloys have been considered most promising solid 
hydrogen storage materials due to their high gravimetric hydrogen storage densities and 
volumetric capacity (see Table 1 adapted from (Chen & Zhu, 2008) for comparison) 
associated to the fact that magnesium is abundant in the earth’s crust, non toxic and cheap 
(Grochala & Edwards, 2004; Jain et al., 2010; Schlapbach & Züttel, 2001).  
 

Metal Hydrides Structure Mass % Peq, T 
LaNi5 LaNi5H6 Hexagonal 1.4 2 bar, 298 K 
CaNi3 CaNi3H4.4 Hexagonal 1.8 0.5 bar, 298 K 
ZrV2 ZrV2H5.5 Hexagonal 3.0 10-8 bar, 323 K 
TiFe TiFeH1.8 Cubic 1.9 5 bar, 303 K 

Mg2Ni Mg2NiH4 
Monoclinic (LT) 

/ Cubic (HT) 3.6 1 bar, 555 K 

Ti-V-based Ti-V-based-H4 Cubic 2.6 1 bar, 298 K 
Mg MgH2 Tetragonal 7.6 1 bar, 573 K 

Table 1. Structure and hydrogen storage properties of typical metal hydrides 

Magnesium can be transformed in a single step to MgH2 hydride with up to 7.6 wt% of 
hydrogen with a volumetric storage efficiency of 110g H2/l (Milanese et al., 2010a), 
according to:  
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 Mg (s) + H2 (g)  MgH2 (s) (3) 

Magnesium metal is hexagonal with P63/mmc space group (α-structure) but the absorption 
of hydrogen induces a structural change into the tetragonal rutile-type structure α-MgH2 
(P42/mnm) (Aguey-Zinsou & Ares-Fernández, 2010) (see Fig. 1). 

 
Fig. 1. Crystal structure of magnesium (left) and magnesium hydride (right) obtained with 
Materials Design® software  

At high temperature and pressure, the latter phase undergoes polymorphic transformations 
to form two modifications: -MgH2 and -MgH2, having an orthorhombic structure and a 
hexagonal structure, respectively (Schlapbach & Züttel, 2001). Other high-pressure 
metastable phases have also been reported (Cui et al., 2008; Ravindran et al., 2004). The 
charge density distribution in these materials has also been investigated and revealed a 
strong ionic character. The charge density determination of MgH2 by means of synchrotron 
X-ray powder diffraction at room temperature, the maximum entropy method (MEM) and 
Rietveld refinement revealed that the ionic charge of Mg and H can be expressed by Mg1.91+ 
and H0.26-, respectively, denoting that Mg in MgH2 is fully ionized, but the H atoms are in a 
weak ionic state (Noritake et al., 2003). The high strength of these bonds results however in 
an unacceptably high thermodynamic stability which diminishes the potentialities of using 
MgH2 in practical applications. The hydrogen desorption temperature is well above 573 K, 
which is related to its high dissociation enthalpy (75 kJ/mol H2) under standard conditions 
of pressure (Schlapbach & Züttel, 2001). In addition, the high directionality of the ionic 
bonds in this system leads to large activation barriers for atomic motion, resulting in slow 
hydrogen sorption kinetics (Vajo & Olson, 2007). 

Several solutions were envisaged to circumvent these drawbacks. They can be accomplished 
to some extent by changing the microstructure of the hydride by ball-milling it (Huot et al., 
1999; Zaluski et al., 1997). In this process the material is heavily deformed, and crystal 
defects such as dislocations, stacking faults, vacancies are introduced combined with an 
increased number of grain boundaries, which enhance the diffusivity of hydrogen into and 
out of the material (Suryanarayana, 2008). Alloying the system with other metallic additives, 
like 3d elements (Ti, Fe, Ni, Cu or Al), or LaNi5, FeTi, Pd, V among others and oxides like V2O5 
or Nb2O5 can also be a way of improving kinetic and/or thermodynamic properties by 
changing the chemical interaction between the atoms (Reule et al., 2000; Rude et al., 2011; Tan 
et al., 2011a). The use of a proper destabilization or catalyst element/alloy into the system has 
also been shown to improve adsorption/desorption kinetics and to lower the adsorption 
temperature (Beattie et al., 2011). Furthermore, substantial improvements in the hydriding-
dehydriding properties can be achieved by nanoengineering approaches using nanosized 
reactants or by nanoconfinement of it (Jeon et al., 2011; Jurczyk et al., 2011; Vajo, 2011; Zaluska 
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et al., 1999a; Zhao-Karger et al., 2010). The latter allows shorter diffusion distances and larger 
surface area, resulting in faster reaction kinetics. It can also introduce alternative mechanisms 
to hydrogen exchange modifying the thermodynamic stability of the process.  

As previously referred, an alternative approach for altering the thermodynamics of 
hydrogenation-dehydrogenation is achieved by using additives that promote hydride 
destabilization by alloy or compound formation in the dehydrogenated state. This approach 
is known as chemical destabilization. The principle underlying this approach is that the 
additives are capable to form compounds or alloys in the dehydrogenated state that are 
energetically favourable with respect to the products of the reaction without additives. 
Destabilization occurs because the system can cycle between the hydride and the additive 
instead of the elemental metal. A generalized enthalpy diagram illustrating this approach - 
destabilization of the generic hydride AH2 through alloy formation (ABx) promoted by the 
presence of the alloying species B - was given by Vajo and Olson (Vajo & Olson, 2007), and 
is shown in Fig. 2.  
 

EN
TH

A
LP

Y
 

    

 A + H2  Dehydrogenated state: H large  T high 
    

    

 ABx + H2 Stabilized alloyed state: H smaller  T lower 
    

    

 AH2 + xB  Hydrogenated state  

    

Fig. 2. Generalized enthalpy diagram illustrating destabilization through alloy formation 
upon dehydrogenation (adapted from Vajo & Olson, 2007) 

1.3 Cu-Mg, Ni-Mg and other MgH2 destabilizing systems 

The work of Reilly and Wiswall provided the first evidences of this concept (Reilly & 
Wiswall, 1967, 1968). In their work, they showed that MgH2 can be destabilized by Cu2Mg. 
The formation of CuMg2 occurs upon dehydrogenation at lower reaction temperatures than 
those obtained with just pure MgH2. The compound CuMg2 crystallizes in the orthorhombic 
structure (Braga et al., 2010c) and has a hydrogen capacity of 2.6 wt. % at 573 K (Jurczyk et 
al., 2007). The hydride formation enthalpy is approximately 5 kJ/mol H2 lower than that of 
the hydrogenation of MgH2 from Mg and this process obeys to the following scheme (Reilly 
& Wiswall, 1967):  

 2CuMg2 (s) +3H2 (g)  3MgH2 (s) +Cu2Mg (s) (4) 

The intermetallic cubic compound Cu2Mg does not hydrogenate under conventional 
hydrogenation conditions and seems to improve dehydrogenation kinetics (as compared to 
MgH2) due to improve resistance towards oxygen contamination (Andreasen et al., 2006; 
Kalinichenka et al., 2011; Reilly & Wiswall, 1967). As to the hexagonal intermetallic 
compound NiMg2, Reilly and Wiswall (Reilly & Wiswall, 1968) established that it reversibly 
reacts with hydrogen to form a ternary hydride Mg2NiH4, with a hydrogen content of 3.6 
wt. %, according to the following scheme:  
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 NiMg2 (s) +2H2 (g)  NiMg2H4 (s) (5) 

Results obtained by A. Zaluska and co-workers (Zaluska et al., 1999b) showed that ball-
milling the mixtures MgH2 and NiMg2H4 results in a synergetic effect of desorption, 
allowing the mixture to operate at temperatures as low as 493 K – 513 K, with good 
absorption / desorption kinetics and with total hydrogen capacity exceeding 5 wt.%. They 
point out however that the ball-milled mixtures of the hydrides behave differently from two 
metal phases that are firstly ball-milled and then hydrogenated. In the latter case volume 
changes occur during hydrogenation with associated volume expansion of the material, in 
contrast to what happen in their study in which NiMg2H4 promoted the hydrogen release 
from an adjacent MgH2 matrix since they undergo a significant volume contraction, which 
facilitates their dehydrogenation. 

Many more studies have focused on changes in the hydriding/dehydriding properties of 
Ni-Mg binary alloys with compositional changes and changes in processing variables. 
Nonetheless, we highlight the study of C. D. Yim and collaborators (Yim et al., 2007) that 
showed that the NiMg2 compound acted as a catalyst in the dissociation of the hydrogen 
molecule, which resulted in a faster nucleation of magnesium hydride compared to pure 
Mg. It also revealed that the capacity and kinetics of hydriding were larger and faster when 
the average size of the hydriding phase was smaller and the volume fraction of the phase 
boundary was larger, since phase boundaries between the eutectic α-Mg and NiMg2 phases 
acted as a fast diffusion path for atomic hydrogen. 

In the full hydrogenated state, the NiMg2H4 structure consists of tetrahedral [NiH4]4- 
complexes in a framework of magnesium ions and two different forms exist, high-
temperature (HT) and low-temperature (LT). Under the partial pressure of 1 atm of 
hydrogen, the HT cubic structure phase transforms into a LT monoclinically distorted 
structure between 518 and 483 K (Zhang et al., 2009). The LT phase has also two 
modifications the untwined (LT1) and micro-twinned (LT2), which depend on the 
thermomechanical history of the sample (Cermak & David, 2011). The hydride formation 
enthalpy for the NiMg2H4 has been determined experimentally for the HT form, and it is in 
the rangeof -64.3 to -69.3 kJ/mol H2, for the LT form this value ranges from -68.6 to -81.0 
kJ/mol H2 (Tan et al., 2011b).  

In the pioneer work of Reilly and Wiswall (Reilly & Wiswall, 1968) it was pointed out the 
catalytical effect of NiMg2 on the hydrogen desorption characteristics of MgH2. Recently, 
Cermak and David (Cermak & David, 2011) showed that NiMg2, and more efficiently the 
LT1 phase of NiMg2H4, were responsible for the catalytic effect of Ni reported in the 
literature. The fact that NiMg2 is a metal whereas NiMg2H4 behaves like a semiconductor 
has opened the way to the possibility of using this system also as a switchable mirror upon 
hydrogenation and dehydrogenation (Setten et al., 2007). A switchable mirror will switch 
from mirror to transparent material upon hydrogenation. A more detailed study of Ni-Mg-
based hydrides can be found in (Orimo & Fujii, 2001).  

Despite all the interest and extensive research on the above referred systems, a problem still 
remains; the hydrogen holding capacities of these materials are considerably less than that 
of MgH2 (Sabitu et al., 2010). A way to overcome this limitation was found by combining 
MgH2 with LiBH4 (which involves the formation of MgB2 and Li-Mg alloy (Yu et al., 2006)) 
since pure LiBH4 has high gravimetric and volumetric hydrogen densities, 18.5 wt. % and 
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121 kg H2/m3, respectively (Bösenberg et al., 2010; Xia et al., 2011). However, although the 
reaction enthalpy is lowered and the hydrogen storage capacity increases (10.5 wt. %), the 
sorption and absorption processes occurs at high temperatures with relatively slow kinetic 
even though more additives are being tested in order to overcome this problem (Fernández 
et al., 2011; Xia et al., 2011). Alternatively, the study of the destabilization of MgH2 with TiH2 
has also been taken experimentally (Choi et al., 2008; Sohn et al., 2011). Observations point 
to a substantially reduced apparent activation energy of 107-118 kJ/mol and significantly 
faster kinetics, compared with the 226 kJ/mol for the similarly milled MgH2. The latter 
system constitutes a promising material to be used in practical applications for hydrogen 
storage. 

The combined destabilization effect of Ni-Mg and Cu-Mg intermetallics towards MgH2 was 
also tested and the Mg-rich ternary Cu-Ni-Mg alloys were recognized to have high potential 
for solid state hydrogen storage and have attracted many research interests. The study 
recently reported by Tan and co-workers (Tan et al., 2011b) elucidates about the influence of 
Cu substitution on the hydrogen sorption properties of magnesium rich Ni-Mg films. This 
study shows a two-step hydrogen absorption process. The first step is due to the absorption 
of Mg not alloyed in the form of NiMg2 and/or CuMg2, hereafter denoted as “free Mg” and 
is very quick, because it is mainly catalyzed by the intermetallic phase, NiMg2. But the 
second step, due to the hydrogen absorption of intermetallic NiMg2 and/or CuMg2 
(“bonded Mg”) is significantly slow. The Cu substitution shows positive effects on 
desorption kinetics during full capacity hydrogen cycling, but shows strongly negative 
effects on absorption kinetics, particularly for the second absorption step, due to the 
segregation of CuMg2 towards the grain boundaries of MgH2, forming a closed shell that 
traps the hydrogen in MgH2. The authors also reported that the Cu substitution has no 
Thermo-destabilization effect on MgH2, but since a significant amount can be dissolved in 
NiMg2, even at elevated temperatures, thermo-destabilization of NiMg2H4 and better 
desorption kinetics are observed. Hong and collaborators (Hong et al., 2011) on their study 
on the hydrogen storage properties of x wt.% Cu-23.5 wt.% Ni-Mg (x = 2.5, 5 and 7.5) 
prepared by rapid solidification process and crystallization heat treatment have also 
reported that the NiMg2 phase has higher hydriding and dehydriding rates than Mg under 
similar conditions and that the addition of a smaller amount of Cu is considered favourable 
to the enhancement of the hydriding and dehydriding rates of the sample. The 2.5 wt.% Cu-
23.5 wt.% Ni-Mg alloy had the highest hydriding and dehydriding rates. These observations 
are in line with the ones previously reported by the group of Milanese (Milanese et al., 
2010b; 2008), who also observed the high sorption capacity and good sorption performance 
of Cu-Ni-Mg mixtures and proposed a two steps sorption process with different kinetics. 
The first step corresponds to the quick hydrogenation of “free Mg”, according to reaction 
(3). After this step, absorption keeps on with a slower rate corresponding to the second step, 
hydrogenation of the “bonded Mg” phases, NiMg2 and CuMg2, according to reactions (4) 
and (5). They also showed that Ni is more effective than Cu in catalyzing the desorption 
reactions and that NiMg2H4 and Cu2Mg phases destabilized each other with the beneficial 
effect of decreasing the dissociation temperature of about 50 K in comparison to the MgH2, 
from “free Mg”. The positive effect of Cu as a catalyst on the hydrogenation and 
thermodynamic properties of NiMg2 mixed by ball milling technique was also studied and 
recently reported by Vyas and co-workers (Vyas et al., 2011) showing that hydrogen storage 
capacity and enthalpy of formation of NiMg2 with 10 wt.% Cu reduces to 1.81 wt.% and 
26.69 kJ (mol H)-1 from 3.56 wt.% and 54.24 kJ (mol H)-1 for pure NiMg2 at 573 K, 
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respectively. They attributed the decrement in the absorption capacity to the formation of 
the intermetallic phase Cu2Mg, which does not absorb the hydrogen but itself behaves like a 
catalyst. However, in the case of nanocrystalline CuxNi10-xMg20 (x = 0 - 4) alloys synthesized 
by melt-spinning technique, it was found (Zhang et al., 2010a, 2010b) that the substitution of 
Ni by Cu does not change the major phase NiMg2 although it leads to a refinement of grains 
with increased cell volume and the formation of a secondary phase CuMg2. This in turn 
leads to a decrease of the hydride stability with a clear improve of the hydrogen desorption 
capacity and kinetics of the alloys. The presence of CuMg2 seems to act as a catalyst for the 
hydride-dehydride reactions of Mg and Mg-based alloys. Similar behaviour was found in 
Cu0.25Ni0.75Mg2 and Cu0.4Ni0.6Mg2 alloys that were prepared by mechanical alloying and 
subsequent thermal treatment (Simičić et al., 2006). The latter effect was also investigated on 
Cu1-xNixMg2 (x = 0 - 1) alloys by Hsu and collaborators (Hsu et al., 2010). They observed that 
by substituting Cu by Ni in CuMg2, the cell volume decreased (since the radius of Cu atom 
is slightly larger than Ni atom) and with increasing Ni content, the effect of Ni is actually 
effective in MgH2 and Mg2NiH4 destabilization, leading to a decrease of desorption 
temperature in these two phases. They also showed that substituted nickel caused the 
hydriding reaction because absorption kinetics and hydrogen storage capacity increased 
with the rise of Ni-substitution contents. 

1.4 Lithium hydride 

An alternative route to be considered is to explore other hydrides besides MgH2 for solid 
hydrogen storage. One of most interesting is lithium hydride, because it contains 12.5 wt.% 
hydrogen. Nonetheless, the desorption temperature is 1183 K for an equilibrium pressure of 
1 bar (Vajo et al., 2004). However, it has been shown (Chen et al., 2003) that when LiH (see 
Fig. 3) reacts with lithium amide (LiNH2) by thoroughly mixing the substances, hydrogen is 
released at temperatures around 423 K, with formation of lithium imide (Li2NH) or Li-rich 
imide (LixNH3-X) and lithium nitride (Li3N) depending on the temperature and molar ratio 
of (LiH/LiNH2) according to the following schemes:  

- Below 593 K: LiH (s) + LiNH2 (s)  2H2 (g) + Li2NH (s) (6) 

 2LiH (s) +LiNH2 (s)  (x-1) H2 (g) + LixNH3-x (s) + (3-x) LiH(s) (7) 

- At higher temperatures: 2LiH (s) + LiNH2 (s)  H2 (g) + Li3N (s) (8) 

 
Fig. 3. Crystal structure of lithium hydride obtained with Materials Design® software  
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From a detailed analysis of high-resolution synchrotron x-ray diffraction data for the lithium 
amide (LiNH2) - lithium imide (Li2NH) hydrogen storage system (David et al., 2007), the 
authors were able to propose an alternative mechanism that does not need to have the 
materials mechanically milled to enhance mixing, as previously recognized by Chen and 
collaborators (Chen et al., 2003) as essential. The mechanism they propose for the 
transformation between lithium amide and lithium imide during hydrogen cycling is a bulk 
reversible reaction that occurs in a non-stoichiometric manner within the cubic anti-fluorite-
like Li-N-H structure, based on both Li+ and H+ mobility within the cubic lithium imide. 
Concluding that increasing the Li+ mobility and/or disorder it is likely to improve the 
hydrogen cycling in this and related Li-based systems. Recently, further systematical 
evaluation of the decompositions of LiNH2 and Li2NH was carried out by Zhang and Hu 
(Zhang & Hu, 2011), who also examined the effect of Cl- anion on the decomposition 
process. Cl- is widely employed as a promoter to improve various catalysts. As a result, 
decomposition mechanisms were established. The decomposition of LiNH2 producing 
Li2NH and NH3 occurs in two steps at the temperature range of 573-723 K. LiNH2 
decomposes into a stable intermediate species (Li1.5NH1.5) and then into Li2NH. 
Furthermore, Li2NH is decomposed into Li, H2, and N2 without formation of Li3N at the 
temperature range of 823-1023 K. The introduction of Cl- can decrease the decomposition 
temperature of Li2NH by about 110 K. 

1.5 Neutron techniques associated with hydrogen solid storage  

Though some progress have been made, the state-of-art materials are still far from meeting the 
aimed targets for hydrogen solid storage material (Churchard et al., 2011). This huge task can 
be facilitated by employing state-of-the-art techniques like, computational first-principles 
calculations to evaluate the thermodynamic properties of the potential materials (Alapati et al., 
2007; Siegel et al., 2007; Yang et al., 2007). This allows a quick screen of a large number of 
potential candidates, searching for thermodynamically suitable ones (saving time and money). 
Once thermodynamic appropriate materials have been found other considerations such as 
structure and dynamics of the materials during hydrogenation/dehydrogenation will 
become crucial in order to understand the fundamental properties of hydrogen storage, in 
realistic conditions and hence design new hydrogen storage materials.  

Neutron scattering techniques are highly suitable for structure and dynamics studies 
related to hydrogen in solids and bound on surfaces. The energy distribution of thermal 
neutrons is nearly ideal for the study of condensed matter in general because it is of the 
same order of magnitude as most molecular and lattice excitations and the de Broglie 
wavelengths of thermal neutrons match quite well with interatomic distances in most 
solids (Squires, 1978). Neutrons have some unique advantages over photons and electrons 
as scattering media which are of particular use for the analysis of hydrides. For these 
purposes the two most useful neutron scattering interactions are coherent elastic 
scattering for Neutron Diffraction (ND) and incoherent Inelastic Neutron Scattering (INS) 
to measure vibrational density of states. The distinction of coherent and incoherent 
scattering interactions is important to the unique advantages offered by ND and INS 
respectively. This is because the relative scattering intensity of a given interaction is 
dependent highly upon the nucleus involved, and as such is isotope dependant. Each 
isotope has a different scattering cross section for both coherent (σcoh) and incoherent (σinc) 
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interactions measured in barns (1 barn = 10-28 m2). In general these scattering cross 
sections do not follow any specific trend regarding nucleus size.  

INS has numerous advantages to other common techniques of obtaining vibrational spectra 
such as infrared (IR) and Raman spectroscopy. INS spectroscopy is hyper sensitive to the 
presence of hydrogen. The protium (1H) nucleus has scattering cross sections of σcoh = 1.8 
and σinc = 80.2 barns respectively. This means neutron scattering in materials containing 
natural abundance hydrogen is largely inelastic. Additionally, the incoherent cross section 
of 1H is one to two orders of magnitude higher than any other isotope (Ross, 2008). This 
means that in hydrides INS spectra are dominated by vibrational modes of hydrogen almost 
exclusively. This hyper sensitivity to hydrogen means that hydride phases are detectible 
even when present in relatively miniscule concentration. Another advantage of INS is the 
complete absence of selection rules for the excitation of vibrational modes. Lattice modes 
(i.e. phonons) are excited with equal opportunity to molecular vibrations. Because both IR 
and Raman spectroscopy rely upon different types of charge symmetry interactions, many 
materials have vibrational modes that cannot be excited by Raman or IR. In particular lattice 
modes are far more easily observable in INS spectra than any other type of vibrational 
spectroscopy. INS is also more useful for comparison with ab initio calculated density of 
states because relative excitation amplitudes are simply dependent upon the magnitude of 
motion and σinc of the excited nucleus (Squires, 1978; Ross, 2008). Free software, such as a-
Climax is available to generate a theoretical INS spectrum from the density of states output 
files from numerous common ab initio packages such as Gaussian, AbInit and Dmol 
(Ramirez, 2004).  

For these reasons INS is extremely useful in identifying the presence of different hydride 
phases which may not be structurally apparent (for example, due to structural disorder). A 
good example is the INS study of Schimmel et al. on MgH2 produced from Mg processed by 
high energy ball milling. Ball milling of Mg to reduce particle size, and introduce fractures, 
defects, and faults has a beneficial effect of increasing hydride formation rate, and reducing 
the temperature required for absorption. Comparison of the INS spectra of the MgH2 
produced from ball milled Mg with well-ordered MgH2 revealed a partial composition of γ-
MgH2, which is metastable and normally exists only at high temperatures (Schimmel et al, 
2005). Presence of γ-MgH2 was indicative of internal stress from mechanical processing. 
However after hydrogen sorption cycling, γ-MgH2 was no longer observable in the INS 
spectrum of the ball milled material, while the fast kinetics and lower sorption temperature 
remained. In this way INS was indispensable in revealing that the particle size reduction is 
more significant in the role of lowering temperature and increasing sorption kinetics than 
the creation of faults and internal stresses after the high energy ball milling of Mg 
(Schimmel, 2005; Ross, 2008).  

Neutron diffraction also provides some unique advantages versus more conventional 
diffraction methods such as X-ray diffraction (XRD). Elastic neutron and X-ray scattering are 
similar in that both result in interference patterns according to Bragg scattering conditions 
(Squires, 1978). In XRD the intensity of a given Bragg reflection varies with the atomic 
number (Z) of the atom at the lattice site. This means that the exact position of hydrogen in a 
structure is practically impossible to determine with XRD. In ND the relative intensities of 
reflections are independent of Z, and instead depend on the coherent scattering cross section 
(σcoh). This means that deuterium (2H; σcoh = 5.6, σinc = 2.0) is just as readily observable as 
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most metal atoms. This allows for the observation of hydride phase transitions which differ 
only by the hydrogen occupation sites, such as in interstitial hydrides. ND also allows 
metals with similar Z values such as Ni (Z=28, σcoh = 13.4) and Cu (Z=29, σcoh = 7.5) to be 
easily distinguished, unlike in XRD. A great deal of caution must be taken to ensure that 2H 
is not displaced by 1H during sample preparation and handling, as the large  σinc of 1H will 
create a substantial background signal. Another advantage of ND is that intensity does not 
diminish greatly with scattering angle as it does in XRD (Massa, 2004). Beyond these 
differences, crystal structure determination techniques are very similar for ND and XRD. 
Common approaches include a combination of a structure solution method and the Rietveld 
refinement method. 

ND and INS carry some common advantages and disadvantages intrinsic with the use of 
neutrons as a scattering medium. Common advantages are associated with the highly 
penetrating quality of neutron radiation through most materials. This provides some 
possibilities for variable depth of measurements. If the neutron beam is directed at a 
relatively thin portion of the sample, a greater quantity of surface and shallow depth 
material is surveyed, whereas in relatively thick segments predominantly material deep 
within the sample is surveyed. The high penetration of neutrons also allows for relatively 
clear in-situ measurements in a wide range of sample environments such as high pressure 
gas cells, furnaces, cryogenic refrigerators, anvil cells and other environments requiring 
obtrusive equipment. This allows for detailed structure and dynamics studies of metastable 
hydride phases, and phase transitions which occur only in extreme conditions. 

There are numerous inconveniences associated with neutrons as well. The most prevalent 
and obvious is the relative scarcity and cost of neutron sources, which typically take two 
forms: a research reactor or a spallation source (fed by a high energy proton accelerator). 
Another drawback is the time required to conduct a measurement, which can range from 
several hours to several days (per measurement). This is due to the short range of nuclear 
forces and relatively low probability of a scattering event, which is the same reason neutron 
radiation penetrates so effectively. Because of the long measurement time and high 
operational cost beam time is allocated very carefully at neutron sources, and flight paths 
are rarely left idle during neutron production. ND and INS require larger sample sizes, 
often multiple grams, to increase the scattering rate.  

2. Hydrides of Cu and Mg intermetallic systems 

We have studied the Cu-Li-Mg system as a hydrogen storage system and, at the same time, 
as a catalyst of the hydrogen storage process, namely for the Ti/TiH2 system (Braga & 
Malheiros, 2007a, 2007b; Braga et al., 2010a, 2010b). The only ternary compound the Cu-Li-
Mg system holds is CuLixMg2-x (x = 0.08) with hexagonal P6222 structure (Braga et al., 
2010c). Since the phase diagrams of Cu-Mg and Ni-Mg are similar (see Fig. 4), and Cu and 
Ni have similar electron affinities, it was thought in the sixties that CuMg2 would store 
hydrogen, too.  

However this is not the case (Reilly & Wiswall, 1967). NiMg2 has a hexagonal structure 
(P6222), but CuMg2 has an orthorhombic structure (Fddd), and this structural difference is 
assumed to be the reason that NiMg2 stores H2 forming a hydride, but CuMg2 does not. 
CuMg2 decomposes into Cu2Mg and MgH2 (Reilly & Wiswall, 1967) upon hydrogen loading 
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Fig. 4. Phase diagrams of Ni-Mg and Cu-Mg (Ansara et al., 1998)  

as previously referred (4). As a result of this reaction and since CuMg2 does not form a 
hydride, CuMg2 was abandoned as a candidate material for hydrogen storage (Reilly & 
Wiswall, 1967; Schlapbach & Züttel, 2001) until the late destabilization studies that were 
previously cited. The hexagonal structure of CuLixMg2-x, suggested the possibility of using 
this phase as a hydrogen storage material (Braga & Malheiros, 2007a, 2007b) because 
CuLixMg2-x has the same space group (P6222) as NiMg2 and NiMg2(H,D)0.3 (lattice 
parameters are almost identical: a = b = 5.250 Å and c = 13.621 Å (at 300 K) for CuLixMg2-x 
and a = b = 5.256 Å and c = 13.435 Å for NiMg2(H,D)0.3 (Senegas et al., 1984)). Therefore, we 
hypothesized that CuLixMg2-x (x = 0.08) would be a hydrogen storage material, just like 
NiMg2 - a hypothesis that has been confirmed by now (Braga & Malheiros, 2007a, 2007b; 
Braga et al., 2010a).  

The change of the CuMg2 orthorhombic (Fddd) structure to a hexagonal structure (P6222) 
upon addition of a small amount of Li has been firmly established (Braga et al., 2007). 
Isostructural phases to CuLixMg2-x are the hexagonal phase NiMg2 and NiMg2H0.24-0.30 
(Senegas et al., 1984). For the NiMg-hydrides, several hydrogen positions were reported: In 
NiMg2H0.29 the hydrogen atoms occupy Wyckoff 6f positions and could occupy the 
interstitial Wyckoff 6h position (Senegas et al., 1984). Other possibilities would be that the H 
atoms would just occupy interstitial Wyckoff 12k position (in NiMg2H0.26) or the Wyckoff 
12k and 6j positions in NiMg2H0.24 (Senegas et al., 1984). This suggests a number of possible 
sites for Li in CuLixMg2-x.  

Interestingly V. Hlukhyy and collaborators (Hlukhyy et al., 2005) have reported a result 
closely related to our observations in the Sn-doped Ni-Mg system. These authors show that 
the synthesis of alloys in the Ni-Mg system is affected by the presence of small amounts of 
Sn (forming NiMg2-xSnx with x = 0.22 and 0.40). The replacement of Mg by Sn produces 
changes in the structure of NiMg2, this time making the alloy change from the NiMg2 type 
(hexagonal) to the CuMg2 type (orthorhombic). While the structure of NiMg1.85Sn0.15 is still 
of NiMg2 type, the structure of NiMg1.78Sn0.22 and NiMg1.60Sn0.40 is already of the CuMg2 
type. These results represent obviously the converse of our own observations in the CuMg2 
structure, and reaffirm our results with respect to CuLixMg2-x. 
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2.1 The CuLi0.08Mg1.92 compound 

We have used neutron diffraction to refine the composition of CuLixMg2-x, site occupancies 
and lattice parameters at different temperatures. In Fig. 5, results from the Time-of-flight 
(TOF) Neutron Powder Diffractometer (NPDF) at the Los Alamos Neutron Science Center 
(LANSCE) are shown.  It was analyzed a sample containing 37.5 at.% of CuLi0.08Mg1.92, 45.1 
at.% of CuMg2 and 17.4 at.% of Cu2Mg. The structure was refined using the General 
Structure Analysis System (GSAS), a Rietveld profile analysis program developed by A. C. 
Larson and R. B. von Dreele (Larson & von Dreele, 2004).   

 
Fig. 5. a) Neutron diffraction pattern of a sample containing CuLi0.08Mg1.92, CuMg2 and 
CuMg2. The highlighted peak corresponds to the (101) reflection for the CuLi0.08Mg1.92 
compound which is not overlapped by other phases. b) Pair Distribution Function (PDF) 
fitting for the same conditions of the pattern in a). 

Furthermore, we’ve fitted the NPDF data using the Pair Distribution Function (PDF) in which 
G(r) was obtained via the Fourier Transform of the total diffraction pattern as indicated below: 

        0
0

2
4 1 sinG r r r Q S Q Qr dQ

r
  



            (9) 

where  r   is the microscopic pair density, 0  is the average atomic number density, and 
r the radial distance. Q is the momentum transfer (  4 sin /Q    ).  S Q  is the 
normalized structure function determined from the experimental diffraction intensity 
(Egami & Billinge, 2003). PDF yields the probability of finding pairs of atoms separated by a 
distance r. PDF fittings were performed using the software PDFgui (Farrow et al., 2007). 

Besides Neutron Diffraction, we have used theoretical complementary methods to determine 
the stoichiometry of the CuLixMg2-x compound. We relied on the Density Functional Theory 
(DFT) (Hohenberg & Kohn, 1964) to calculate the structure that minimized the Electronic 
Energy at 0 K, without accounting for the zero point energy. The latter energy gives us a good 
estimation of the Enthalpy of Formation at 0 K especially since we were relating data for 
stoichiometries that did not differ too much and for similar crystal structures. The results 
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obtained are in close agreement with those obtained from ND after Rietveld refinement - 
CuLixMg2-x (x = 0.08). Nonetheless, no conclusions about Li site occupancies could be drawn 
from the use of the referred means. DFT shows that there isn’t a clear preference, in terms of 
energy, for the different Li site occupancies. Then again, a technique that gives information 
about the average site occupancies - like the Rietveld refinement - is also inadequate to clarify 
this problem; therefore we have used PDF to determine Li preferred sites. With PDF fittings 
we were allowed to go further (see Fig. 5b). PDF does not see the average but the local 
structure and with PDF, all results but those in which Li would substitute Mg1 sites (1/2, 0, z), 
gave negative occupancies for Li. For Li substituting Mg1 we’ve obtained an average 
composition for CuLixMg2-x (x = 0.07) which is in agreement with the other obtained results. 
For further information please see (Braga et al., 2010c).  

2.2 Hydrogen storage in the Cu-Li-Mg-H(D) system 

To study the hydrogen storage in the Cu-Li-Mg system several techniques were used (Braga 
et al., 2010a). Besides absorption/desorption, Differential Scanning Calorimetry, Thermal 
Gravimetry Analysis (DSC/TGA), X-ray Diffraction (XRD) both at the laboratory and at the 
Synchrotron, we have used Neutron Diffraction and Inelastic Neutron Scattering.  Owing to 
the low X-ray scattering power of hydrogen, neutron diffraction experiments on deuterides 
are necessary as previously highlighted in section 1.5.  

Most atomic arrangements were determined on powders of different samples yet we have 
also used a bulk sample machined into a cylinder to obtain ND data in both the surface and 
the center of the sample during deuterium uptake.  

The data were usually analyzed by the Rietveld method, yet in some cases in which the 
background was noisier we have used the biased method (Larson & von Dreele, 2004). For 
better convergence, the number of refined parameters in particular those of the atomic 
displacement amplitudes are reduced by constraints.  

ND results obtained from the High-Intensity Powder Diffractometer HIPD at LANSCE, Los 
Alamos National Laboratory, for a sample initially containing 78 wt.% CuLi0.08Mg1.92 + 22 
wt.%Cu2Mg (from here on “initially containing” means before hydrogen/deuterium 
absorption) and that was deuterated ex situ at 473 K at P ≤ 50 atm in order to determine the 
crystal structure of the first deuteride phase formed in the sample (see Fig. 6 left). This 
pattern was refined using Rietveld’s method. 

The CuLi0.08Mg1.92D5 crystal structure was determined to be monoclinic P121, with a = 15.14 
Å, b = 6.88 Å, c = 5.55 Å and  = 91.73º according to the formula CuLi0.08Mg1.92D5 = 
0.5(Mg32+.[CuD4]23-.MgD2) corresponding to 4.4 wt% D per formula unit. CuLi0.08Mg1.92D5 is 
the first deuteride/hydride to be formed. This result is interesting by itself, but the presence 
of MgD2 in the diffraction pattern, highlights even further the possibilities of applications of 
this compound. According to these results, it can be obtained MgH(D)2 from a sample that 
did not contain “free” Mg or CuMg2. Furthermore, the deuteration process occurred at 473 
K, which is considerably lower than the hydrogen absorption temperature reported for 
CuMg2 (4) (Reilly & Wiswall, 1967).  

The experiments with the bulk sample at SMARTS, LANSCE, Los Alamos National 
Laboratory, show that before MgD2 is observed, CuLi0.08Mg1.92D5 is already distinguishable 
at the surface even in a sample that initially contained CuMg2 (see Fig. 7). Therefore, it 

www.intechopen.com



 
Neutron Diffraction 

 

14

 
Fig. 6. (left) Rietveld refinement of a sample containing CuLi0.08Mg1.92, Cu2Mg, MgD2 and 
CuLi0.08Mg1.92D5 obtained in HIPD. wRp and Rp are the reliability factors as defined in 
(Larson & von Dreele, 2004). (right) ND pattern of the center of a bulk cylinder sample 
containing CuLi0.08Mg1.92, Cu2Mg, CuMg2 obtained from the Spectrometer for Materials 
Research at Temperature and Stress SMARTS during an in situ reaction with D2 at 523 K and 
~34 atm. Both patterns show experimental, refined and difference between experimental 
and calculated intensities. 

 
 

Fig. 7. (left and right) ND pattern of the surface of a bulk cylinder sample initially containing 
CuLi0.08Mg1.92, Cu2Mg, and CuMg2 obtained in SMARTS during an in situ reaction with D2 at 
523 K and ~34 atm. (right) it is highlighted that MgD2 cannot justify some existing peaks. 
Both patterns show experimental, refined and difference between experimental and 
calculated intensities. 

seems that CuLi0.08Mg1.92D5 will have a catalytic and destabilizing roll that was additionally 
observed with the Ti/TiH2 systems (Braga et al., 2010b). 
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Fig. 8. ND refined pattern of the center and surface of a bulk cylinder sample initially 
containing CuLi0.08Mg1.92, Cu2Mg, and CuMg2 obtained in SMARTS during an in situ 
reaction with D2 at 523 K and ~34 atm. Besides the texture effect that might be present in a 
bulk sample, it seems that the center initially contained more CuLi0.08Mg1.92 than the surface.  

Experimental information about the metal–hydrogen interactions can be obtained by 
measuring lattice vibrations via INS, as previously highlighted in section 1.5. Because of the 
large difference between the masses of metal and H atoms in transition-metal–hydrogen 
systems, the acoustic dispersion branches of the phonon spectra can be attributed to the 
motion of the metal atoms, the optic branches to the vibrations of the light H atoms relative 
to the metal lattice. The densities of states of optic phonons typically show a pronounced 
maximum at the energy of the lattice vibrations at the  point in the centre of the phonon 
Brillouin zone (q = 0) e.g. in (Fukay, 1993). These phonon modes describe the vibration of 
the undistorted H sublattice relative to the rigid metal sublattice. Hence, they contain the 
metal–hydrogen interaction only. This is usually stronger than the H–H interaction, which 
leads to the dispersion of the optic branches. In the limit of very low H concentrations, the H 
vibrations can be imagined as independent vibrations of local Einstein oscillators at 
interstitial H sites. For both the lattice vibrations at the  point and the local vibrations, one 
can observe transitions from the ground state, the quantum-mechanical zero-point vibration 
of the H atoms, to the first excited states, e.g. by measuring optic phonon excitations, and 
transitions to higher excited states. Their energies, intensities and symmetry splittings yield 
an insight into the shapes of the potential and the wavefunctions for the vibrations of the 
light particles (Elsasser et al., 1998).  

We have measured samples of the Cu-Li-Mg-H system by means of INS measured with the 
Filter Difference Spectrometer FDS, at LANSCE, Los Alamos National Laboratory. There is 
no doubt about the sequence of events; first there is the formation of CuLi0.08Mg1.92H5 (see 
Fig. 9a) and then in subsequent cycles the formation of MgH2 (see Fig. 9b), either for 
disproportionation of CuLi0.08Mg1.92H5 or from hydrogenation of CuMg2.   

DSC/TGA experiments show that CuLi0.08Mg1.92H5 starts desorbing hydrogen at 313 K to 328 
K. In this range of temperatures the sample can release up to 1.3 wt.% (results for a isothermal 
experiment with a sample initially containing approximately 78 wt.% of CuLi0.08Mg1.92 and 
22 wt.% of Cu2Mg - which does not absorb hydrogen at the temperature and pressure that 
were used). In Fig. 10 it can be seen that 0.5 wt.% of a sample initially containing 61 wt.%  
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Fig. 9. a) INS spectra for NiMg2H4 (1st and 2nd hydrogenation cycles) and for two samples 
containing CuLi0.08Mg1.92 (close circles below correspond to a sample that also contained 
Cu2Mg and the open circles above correspond to sample that contained Cu2Mg and CuMg2 as 
well). All samples show the formation of a similar monoclinic structure. As in NiMg2H4, in 
which Ni is bonded to four atoms of H forming the tetrahedral complex [NiH4]4-, Cu is also 
bonded to four atoms of H forming the tetrahedral complex [CuH4]3-, which was previously 
referred on (Yvon & Renaudin, 2005). b) Sample initially containing approximately 61 wt.% of 
CuLi0.08Mg1.92, 23 wt.% of CuMg2 and 16 wt.% of Cu2Mg, after the 3rd hydrogenation cycle at 
473 K, and ~50 atm. It is clear the formation of MgH2 with a peak at ~620 cm-1. 
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Fig. 10. TGA of two samples initially containing approximately 61 wt.% of CuLi0.08Mg1.92, 23 
wt.% of CuMg2 and 16 wt.% of Cu2Mg. Samples were measured after hydrogenation but 
they are not expected to be saturated in hydrogen prior to the experiment.  

of CuLi0.08Mg1.92, 23 wt.% of CuMg2 and 16 wt.% of Cu2Mg can be released at T < 350 K. In 
spite of the fact that there was some visible oxidation during this run, we think it was worth 
showing this initial desorption. This initial desorption seems to be due to CuLi0.08Mg1.92H5. At 
~473 K, hydrogen starts to be desorbed at a different rate, probably due to the 
disproportionation of CuLi0.08Mg1.92H5, with the formation of MgH2, which will start releasing 
hydrogen at 553-573 K. Additionally, MgH2 can be formed upon hydrogenation of CuMg2.  
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The DSC/TGA results show that the system containing CuLi0.08Mg1.92 and Cu2Mg can 
destabilize MgH2 in a more efficient way than Cu2Mg by itself can. In fact, in a DSC 
experiment in which kinetics must be accounted for, MgH2 will release hydrogen at 553-573 
K, which can only be obtained when particles are reduced to nanopowders. 

2.3 Hydrogen storage in the Cu-Li-Mg-H(D)+Ti system 

A sample with 60.5 at% of CuLi0.08Mg1.92, 23.9 at% of CuMg2 and 15.6 at% of Cu2Mg was 
mechanically alloyed to titanium resulting into Cu-Li-Mg+Ti samples. The brittle CuLiMg 
alloy was mixed with Ti (99.9% purity, 325 mesh, Alfa Aesar) so that 68.2 at% / 47.3 wt% of 
the final mixture was Ti. The mixture was ball-milled for 3 h in a dry box under a He 
protective atmosphere. The Cu-Li-Mg+Ti mixture was then sealed inside a stainless steel 
crucible and kept at 473 K for 9h under D2 at P = 34 bar. These samples were then cooled to 5 
K (HIPD, neutron powder diffraction) over a period of 2 to 3 hours. 

 

 
Fig. 11. Comparison of Cu-Li-Mg+Ti-D neutron diffraction pattern refinements from 
measurements taken at T= 100K, 200K, and 300K.  
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Cu-Li-Mg+Ti-D neutron diffraction samples were quenched and measured at the lowest 
temperature, 5K, first with 60K, 100K, 200K and 300K measurements taken subsequently. 
For diffraction patterns collected at 5K – 100K there is no evidence of any titanium deuteride 
phases. This is immediately obvious in Fig. 11 which shows a comparison of the 100, 200 
and 300 K Cu-Li-Mg+Ti-D. Bragg peaks belonging to tetragonal TiD2 begin to appear in the 
200K pattern of the Cu-Li-Mg+Ti-D sample. The refinement at 100 K includes the 5 phases: 
CuMg2, Cu2Mg, CuLi0.08Mg1.92, CuLi0.08Mg1.92D5 and α-Ti; at 200 K: CuMg2, Cu2Mg, 
CuLi0.08Mg1.92, CuLi0.08Mg1.92D5 and MgD2 plus tetragonal TiD2 and at 300 K: CuMg2, 
Cu2Mg, CuLi0.08Mg1.92, CuLi0.08Mg1.92D5 plus cubic TiD2 and represents an excellent fit to the 
data as confirmed by the residual. At 300K a structural phase transition (tetragonal to cubic) 
occurs in TiD2 (Yakel, 1958). The appearance of the TiD2 cubic phase in the 300K diffraction 
pattern is confirmed by refinement as shown in Fig. 11. 

Fig. 11 shows the changes in the Cu-Li-Mg+Ti-D sample as the temperature is increased 
from 100K to 300K: The CuLi0.08Mg1.92D5, MgD2 and α-Ti phases are progressively reduced 
in intensity while TiD2 appears at 200K transforming from tetragonal to cubic at 300K. Since 
there was no further exposure of the sample to deuterium, the formation of TiD2 must have 
been facilitated through solid state diffusion of deuterium from a separate phase. The decrease 
in intensity of Bragg peaks belonging to the Cu-Li-Mg-D phase implicates that the 
mechanism involves solid state transfer of deuterium from Cu-Li-Mg-D to Ti. 

DSC/TGA measurements show the dehydrogenation of CuLi0.08Mg1.92H5 accounts for 
approximately third of the total mass loss. Given that no other hydride phases were present 
in any significant quantity, and that MgH2 began dehydrogenation at 553 K in the Cu-Li-
Mg-H samples, the mass loss beginning at 590 K is due to the release of hydrogen from 
TiH2. This demonstrates a significant catalytic effect for desorption as well given that TiH2 
ordinarily does not dissociate until well above 723 K (Gibb & Kruschwitz, 1950). For further 
information please check (Braga et al., 2010b). 

3. Conclusion 

The hydrogen storage world still offers a considerable amount of challenges since no 
universal solution has been found. Eventually, different solutions will be proposed to suite 
different applications.  

The Cu-Li-Mg system provides other possibilities for catalytic and destabilization effects yet 
not fully explored. 

There are several techniques that can be employed to study systems containing hydrogen. 
Nonetheless, Neutron Scattering is a very useful resource, in particular, Neutron Diffraction. 
In the latter, crystal structure of deuteride phases are directly studied since deuterium can 
be detected by ND and accurate results can be obtained either in ex situ or in situ 
experiments as shown previously. 

4. Acknowledgments 

The authors would like to acknowledge FCT – Portugal and FEDER - EU, for the 
PTDC/CTM/099461/2008 project. This work has benefited from the use of HIPD, NPDF, 
SMARTS and FDS at LANSCE, LANL, funded by DOE, DE-AC52-06NA25396. The authors 

www.intechopen.com



 
Hydrides of Cu and Mg Intermetallic Systems: Characterization and Catalytic Function 

 

19 

would like to acknowledge the Lujan Center‘s, LANSCE, instrument scientists for their 
support and helpful discussions. 

5. References 

Aguey-Zinsou, K. & Ares-Fernández, J. (2010). Hydrogen in magnesium: new perspectives 
toward functional stores. Energy & Environmental Science, Vol. 3, No. 5, (February 
2010), pp.  526-543, ISSN 1754-5706 

Alapati, S., Johnson, J. & Sholl, D. (2007). Using first principles calculations to identify new 
destabilized metal hydride reactions for reversible hydrogen storage. Physical 
Chemistry Chemical Physics, Vol. 9, No. 12, (February 2007), pp. 1438-1452, ISSN 
1463-9084 

Andreasen, A., Sørensen, M., Burkarl, R., Møller, B., Molenbroek, A., Pedersen, A., Vegge, T. 
& Jensen, T. (2006). Dehydrogenation kinetics of air-exposed MgH2/Mg2Cu and 
MgH2/MgCu2 studied with in situ X-ray powder diffraction. Applied Physics A, Vol. 
82, No. 3, (February 2006), pp. 515-521, ISSN 1432-0630 

Ansara, I., Dinsdale, A. & Rand, M. (Ed(s)). (1998). COST 507, Thermochemical database for 
light metal alloys, Vol. 2, pp. 170-174, Office for Official Publications of the European 
Communities, ISBN 92-828-3902-8, Luxembourg 

Beattie, S., Setthanan, U. & McGrady, G. (2011). Thermal desorption of hydrogen from 
magnesium hydride (MgH2): An in situ microscopy study by environmental SEM 
and TEM. International Journal of Hydrogen Energy, Vol. 36, No. 10, (May 2011), pp. 
6014-6021, ISSN 0360-3199 

Bösenberg, U., Ravnsbæk, D., Hagemann, H., D’Anna, V., Minella, B., Pistidda, C., Beek, W., 
Jensen, T., Bormann, R. & Dornheim, M. (2010). Pressure and Temperature 
Influence on the Desorption Pathway of the LiBH4−MgH2 Composite System. The 
Journal of Physical Chemistry C, Vol. 114, No. 35, (August 2010), pp. 15212-15217, 
ISSN 1932-7455 

Braga, M., Acatrinei, A., Hartl, M., Vogel, S., Proffen, T. & Daemen, L. (2010a). New 
Promising Hydride Based on the Cu-Li-Mg system. Journal of Physics: Conference 
Series, Vol. 251, (December 2010), pp. 012040 [4 pages], ISSN 1742-6596 

Braga, M., Wolverton, M., Llobet, A. & Daemen, L. (2010b). Neutron Scattering to 
Characterize Cu/Mg(Li) Destabilized Hydrogen Storage Materials. Materials 
Research Society Symposium Proceedings, Vol. 1262, pp. 1262-W03-05 (April 2010), 
ISSN 0272-9172 

Braga, M., Ferreira, J., Siewenie, J., Proffen, Th., Vogel, S. & Daemen, L. (2010c). Neutron 
powder diffraction and first-principles computational studies of CuLixMg2-x 
(x≅0,08), CuMg2, and Cu2Mg. Journal of Solid State Chemistry, Vol. 183, No. 1, 
(January 2010), pp. 10-19, ISSN 0022-4596 

Braga, M. & Malheiros, L. (2007a). CuMg2-YLiX alloy for hydrogen storage. International 
patent, WO 2007046017 (A1) 

Braga, M. & Malheiros, L. (2007b). CuMg2-YLiX alloy for hydrogen storage. National patent, 
PT 103368 (A) 

Braga, M., Ferreira, J. & Malheiros, L. (2007). A ternary phase in Cu–Li–Mg system. Journal of 
Alloys and Compounds, Vol. 436, No. 1-2, (June 2007), pp. 278-284, ISSN 0925-8388 

www.intechopen.com



 
Neutron Diffraction 

 

20

Cermak, J. & David, B. (2011). Catalytic effect of Ni, Mg2Ni and Mg2NiH4 upon hydrogen 
desorption from MgH2. International Journal of Hydrogen Energy, Vol. 36, No. 21, 
(October 2011), pp. 13614-13620, ISSN 0360-3199 

Chen, P. & Zhu, M. (2008). Recent progress in hydrogen storage. Materials Today, Vol. 11, 
No. 12, (December 2008), pp. 36-43, ISSN 1369-7021 

Chen, P., Xiong, Z., Luo, J., Lin, J. & Tan, K. (2003). Interaction between lithium amide and 
lithium hydride. The Journal of Physical Chemistry B, Vol. 107, No. 37, (September 
2003), pp. 10967-10970, ISSN 1520-5207 

Choi, Y., Hu, J., Sohn, H. & Fang, Z. (2008). Hydrogen storage properties of the Mg–Ti–H 
system prepared by high-energy–high-pressure reactive milling. Journal of Power 
Sources, Vol. 180, No. 1, (May 2008), pp. 491-497, ISSN 0378-7753 

Churchard, A., Banach, E., Borgschulte, A., Caputo, R., Chen, J., Clary, D., Fijalkowski, K., 
Geerlings, H., Genova, R., Grochala, W., Jaroń, T., Juanes-Marcos, J., Kasemo, B., 
Kroes, G., Ljubić, I., Naujoks, N., Nørskov, J., Olsen, R., Pendolino, F., Remhof, A., 
Románszki, L., Tekin, A., Vegge, T., Zäch, M., & Züttelc, A. (2011). A multifaceted 
approach to hydrogen storage. Physical Chemistry Chemical Physics, Vol. 13, No. 38, 
(September 2011), pp. 16955-16972, ISSN 1463-9084 

Cui, S., Feng, W., Hu, H., Feng, Z. & Wang, Y. (2008). Structural phase transitions in MgH2 
under high pressure. Solid State Communications, Vol. 148, No. 9-10, (December 
2008), pp. 403-405, ISSN 0038-1098 

David, W., Jones, M., Gregory, D., Jewell, C., Walton, A. & Edwards, P. (2007). A mechanism 
for non-stoichiometry in the lithium amide/lithium imide hydrogen storage 
reaction. Journal of the American Chemical Society, Vol. 129, No. 6, (February 2007), 
pp. 1594-1601, ISSN 0002-7863 

Egami, T. & Billinge, S. (2003). Underneath the Bragg-Peaks: Structural Analysis of Complex 
Materials (First edition), Pergamon Press, Elsevier Ltd, ISBN 0-08-042698-0, 
Amsterdam 

Elsasser, C., Krimmel, H., Fahnle, M., Louie, S. & Chan, C. (1998). Ab initio study of iron and 
iron hydride: III. Vibrational states of H isotopes in Fe, Cr and Ni. Journal of Physics: 
Condensed Matter, Vol. 10, No. 23, (June 1998), pp. 5131 [16 pages], ISSN 0953-8984 

European Commission (2003). World energy, technology and climate policy outlook 2030 —
WETO, in: Directorate-General for Research Energy, EUR 20366, Available from:  

 http://ec.europa.eu/research/energy/pdf/weto_final_report.pdf 
Farrow, C., Juhas, P., Liu, J., Bryndin, D., Božin, E., Bloch, J., Proffen, T. & Billinge, S. (2007). 

PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. 
Journal of Physics: Condensed Matter, Vol. 19, No. 33, (July 2007), pp. 335219 [7 
pages], ISSN 0953-8984 

Felderhoff, M., Weidenthaler, C., von Helmoltb, R. & Eberleb, U. (2009). Hydrogen storage: 
the remaining scientific and technological challenges. Physical Chemistry Chemical 
Physics, Vol. 9, No. 21, (May 2007), pp. 2643-2653, ISSN 1463-9084 

Fernández, A., Deprez, E. & Friedrichs, O. (2011). A comparative study of the role of 
additive in the MgH2 vs. the LiBH4–MgH2 hydrogen storage system. International 
Journal of Hydrogen Energy, Vol. 36, No. 6, (March 2011), pp. 3932-3940, ISSN 0360-
3199 

Fukai, Y. (1993). The Metal-Hydrogen System: Basic Bulk Properties (First edition), Springer-
Verlag, ISBN 3540-556370, Berlin 

www.intechopen.com



 
Hydrides of Cu and Mg Intermetallic Systems: Characterization and Catalytic Function 

 

21 

Gibb, T. & Kruschwitz, H. (1950). The Titanium-Hydrogen System and Titanium Hydride. I. 
Low-Pressure Studies. Journal of American Chemical Society, Vol. 72, No. 12 pp. 5365-
5369 

Grochala, W. & Edwards, P. (2004). Thermal Decomposition of the Non-Interstitial Hydrides 
for the Storage and Production of Hydrogen. Chemical Reviews, Vol. 104, No. 3, 
(March 2004), pp. 1283-1315, ISSN 0009-2665 

Hlukhyy, V., Rodewald, U. & Pöttgen, R. (2005). Magnesium-Tin Substitution in NiMg2. 
Zeitschrift für anorganische und allgemeine Chemie, Vol. 631, No. 15, (November 2005), 
pp. 2997–3001, ISSN 1521-3749 

Hohenberg, P. & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review B, Vol. 136, 
No. 3B, (November 1964) pp. B864-B871, ISSN 1098-0121 

Hong, S., Bae, J., Kwon, S. & Song, M. (2011). Hydrogen storage properties of Mg-23.5Ni-
xCu prepared by rapid solidification process and crystallization heat treatment. 
International Journal of Hydrogen Energy, Vol. 36, No. 3, (February 2011), pp. 2170-
2176, ISSN 0360-3199 

Hsu, F., Hsu, C., Chang, J., Lin, C., Lee, S. & Jiang, C. (2010). Structure and hydrogen storage 
properties of Mg2Cu1−xNix (x = 0–1) alloys. International Journal of Hydrogen Energy, 
Vol. 35, No. 24, (December 2010), pp. 13247-13254, ISSN 0360-3199 

Huot, J., Liang, G., Boily, S., Neste, A. & Schulz, R. (1999). Structural study and hydrogen 
sorption kinetics of ball-milled magnesium hydride. Journal of Alloys and 
Compounds, Vol. 293-295, (December 1999), pp. 495-500, ISSN 0925-8388 

Jain, I., Lal, C. & Jain, A. (2010). Hydrogen storage in Mg: A most promising material. 
International Journal of Hydrogen Energy, Vol. 35, No. 10, (May 2010), pp.  5133-5144, 
ISSN 0360-3199 

Jain, I. (2009). Hydrogen the fuel for 21st century. International Journal of Hydrogen Energy, 
Vol. 34, No. 17, (September 2009), pp. 7368-7378, ISSN 0360-3199 

Jeon, K., Moon, H., Ruminski, A., Jiang, B., Kisielowski, C., Bardhan, R. & Urban, J. (2011). 
Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen 
storage without using heavy-metal catalysts. Nature Materials, Vol. 10, No. 4, (April 
2011), pp. 286-290, ISSN 1476-4660 

Jurczyk, M., Nowak, M., Szajek, A. & Jezierski, A. (2011). Hydrogen storage by Mg-based 
nanocomposites. International Journal of Hydrogen Energy, (In press - available online 
27 April 2011), doi:10.1016/j.ijhydene.2011.04.012, ISSN 0360-3199 

Jurczyk, M., Okonska, I., Iwasieczko, W., Jankowska, E. & Drulis H. (2007). Thermodynamic 
and electrochemical properties of nanocrystalline Mg2Cu-type hydrogen storage 
materials. Journal of Alloys and Compounds, Vol. 429, No. 1-2, (February 2007), pp. 
316-320, ISSN 0925-8388 

Kalinichenka, S., Röntzsch, L., Riedl, T., Gemming, T., Weißgärber, T. & Kieback, B. (2011). 
Microstructure and hydrogen storage properties of melt-spun Mg–Cu–Ni–Y alloys. 
International Journal of Hydrogen Energy, Vol. 36, No. 2, (January 2011), pp. 1592-
1600, ISSN 0360-3199 

Larson, A., von Dreele, R. (2004). GSAS Generalized Structure Analysis System, LANSCE, 
Los Alamos. 

Massa, W. (2008). Crystal Structure determination. Springer-Verlag, Berlin Heidelberg. ISBN 
978-3540206446 

www.intechopen.com



 
Neutron Diffraction 

 

22

Milanese, J., Girella, A., Garroni, S., Bruni, G., Berbenni, V., Matteazzi, P. & Marini, A. 
(2010a). Effect of C (graphite) doping on the H2 sorption performance of the Mg–Ni 
storage system. International Journal of Hydrogen Energy, Vol. 35, No. 3, (February 
2010), pp. 1285-1295, ISSN 0360-3199 

Milanese, C., Girella, A., Bruni, G., Cofrancesco, P., Berbenni, V., Matteazzi, P. & Marini, A. 
(2010b). Mg-Ni-Cu mixtures for hydrogen storage: A kinetic study. Intermetallics, 
Vol. 18, No. 2, (February 2010), pp. 203-211, ISSN 0966-9795 

Milanese, C., Girella, A., Bruni, G., Cofrancesco, P., Berbenni, V., Villa, M., Matteazzi, P. & 
Marini, A. (2008). Reactivity and hydrogen storage performances of magnesium–
nickel–copper ternary mixtures prepared by reactive mechanical grinding. 
International Journal of Hydrogen Energy, Vol. 33, No. 17, (September 2008), pp. 4593-
4606, ISSN 0360-3199 

Noritake, T., Towata, S., Aoki, M., Seno, Y., Hirose, Y., Nishibori, E., Takata, M. & Sakata, M. 
(2003). Charge density measurement in MgH2 by synchrotron X-ray diffraction. 
Journal of Alloys and Compounds, Vol. 356-357, (August 2003), pp. 84-86, ISSN 0925-
8388 

Orimo, S. & Fujii, H. (2001). Materials science of Mg-Ni-based new hydrides. Applied Physics 
A, Vol. 72, No. 2, (April 2001), pp. 167-186, ISSN 1432-0630 

Ramirez-Cuesta, A. (2004). aCLIMAX 4.0. 1, The new version of the software for analyzing 
and interpreting INS spectra. Computer Physics Communications. Vol. 157, No. 3, pp. 
226-238. 

Ravindran, P., Vajeeston, P., Fjellvåg, H. & Kjekshus, A. (2004). Chemical-bonding and high-
pressure studies on hydrogen-storage materials. Computational Materials Science, 
Vol. 30, No. 3-4, (August 2004), pp. 349-357, ISSN 0927-0256  

Reilly, J. & Wiswall, R. (1967). The Reaction of Hydrogen with Alloys of Magnesium and 
Copper. Inorganic chemistry, Vol. 6, No. 12, (December 1967), pp. 2220-2223, ISSN 
0020-1669 

Reilly, J. & Wiswall, R. (1968). The Reaction of Hydrogen with Alloys of Magnesium and 
Nickel and the Formation of Mg2NiH4. Inorganic chemistry, Vol. 7, No. 11, 
(November 1968), pp. 2254-2256, ISSN 0020-1669 

Reule, H., Hirscher, M., Weißhardt, A. & Kronmüller, H. (2000). Hydrogen desorption 
properties of mechanically alloyed MgH2 composite materials. Journal of Alloys and 
Compounds, Vol. 305, No. 1-2, (June 2000),  pp. 246-252, ISSN 0925-8388 

Ross, D. (2008). Neutron scattering studies for analysing solid state hydrogen storage, in: 
Solid State Hydrogen Storage Materials and Chemistry Walker, G. Ed. CRC Woodhead 
Publishing: Cambridge, England, pp. 135-172. ISBN 9781845692704 

Rude, L., Nielsen, T., Ravnsbæk, D., Bösenberg, U., Ley, M., Richter, B., Arnbjerg, L., 
Dornheim, M., Filinchuk, Y., Besenbacher, F. & Jensen, T. (2011). Tailoring 
properties of borohydrides for hydrogen storage: A review. Physica Status Solidi A, 
Vol. 208, No. 8, (July 2011), pp. 1754-1773, ISSN 1862-6300 

Sabitu, S., Gallo, G. & Goudy, A. (2010). Effect of TiH2 and Mg2Ni additives on the hydrogen 
storage properties of magnesium hydride. Journal of Alloys and Compounds, Vol. 499, 
No. 1, (June 2010), pp. 35-38, ISSN 0925-8388 

Schimmel, H., Huot, J., Chapon, L., Tichelaar, F. & Mulder, F. (2005). Hydrogen Cycling of 
Niobium and Vanadium Catalyzed Nanostructured Magnesium. Journal of the 

www.intechopen.com



 
Hydrides of Cu and Mg Intermetallic Systems: Characterization and Catalytic Function 

 

23 

American Chemical Society, Vol. 127, No. 41, (September 2005), pp. 1438-14354, ISSN 
0002-7863 

Schlapbach, L. & Züttel, A. (2001). Hydrogen-storage materials for mobile applications. 
Nature, Vol. 414, (November 2001), pp. 353-358, ISSN 0028-0836 

Senegas, J., Mikou, A., Pezat, M. & Darriet, B. (1984). Localisation et diffusion de 
l'hydrogene dans le systeme Mg2Ni-H2: Etude par RMN de Mg2NiH0,3 et Mg2NiH4. 
Journal of Solid State Chemistry, Vol. 52, No. 1, (March 1984), pp. 1-11, ISSN 0022-
4596 

Setten, M., Wijs, G. & Brocks, G. (2007). Ab initio study of the effects of transition metal 
doping of Mg2NiH4. Physical Review B, Vol. 76, (August 2007), pp. 075125 [8 pages], 
ISSN 1098-0121 

Siegel, D., Wolverton, C. & Ozoliņš, V. (2007). Thermodynamic guidelines for the prediction 
of hydrogen storage reactions and their application to destabilized hydride 
mixtures. Physical Review B, Vol. 76, No. 13, (October 2007), pp. 134102 [6 pages], 
ISSN 1098-0121 

Simičić, M., Zdujić, M., Dimitrijević, R.,  Nikolić-Bujanović, L. & Popović N.(2006). 
Hydrogen absorption and electrochemical properties of Mg2Ni-type alloys 
synthesized by mechanical alloying. Journal of Power Sources, Vol. 158, No. 1, (July 
2006), pp. 730-734, ISSN 0378-7753 

Sohn, H. & Emami, S. (2011). Kinetics of dehydrogenation of the Mg–Ti–H hydrogen storage 
system. International Journal of Hydrogen Energy, Vol. 36, No. 14, (July 2011), pp. 
8344-8350, ISSN 0360-3199 

Squires, G. (1978). Introduction to the theory of Thermal Neutron Scattering. Dover Publications 
Inc., Mineola, New York, ISBN 978-0486694474 

Suryanarayana, C. (2008). Recent developments in mechanical alloying. Reviews on Advanced 
Materials Science, Vol. 18, No. 3, (August 2008), pp. 203-211, ISSN 1605-8127 

Tan, Z., Chiu, C., Heilweil, E. & Bendersky, L. (2011a). Thermodynamics, kinetics and 
microstructural evolution during hydrogenation of iron-doped magnesium thin 
films. International Journal of Hydrogen Energy, Vol. 36, No. 16, (August 2011), pp. 
9702-9713, ISSN 0360-3199 

Tan, X., Danaie, M., Kalisvaart, W. & Mitlin, D. (2011b). The influence of Cu substitution on 
the hydrogen sorption properties of magnesium rich Mg-Ni films. International 
Journal of Hydrogen Energy, Vol. 36, No. 3, (February 2011), pp. 2154-2164, ISSN 
0360-3199 

Vajo, J. (2011). Influence of nano-confinement on the thermodynamics and dehydrogenation 
kinetics of metal hydrides. Current Opinion in Solid State & Materials Science, Vol. 15, 
No. 2, (April 2011), pp. 52-61, ISSN 1359-0286 

Vajo, J. & Olson, G. (2007). Hydrogen storage in destabilized chemical systems. Scripta 
Materialia, Vol. 56, No. 10, (May 2007), pp. 829-834, ISSN 1359-6462 

Vajo, J., Mertens, F., Ahn, C., Bowman Jr., R. & Fultz, B. (2004). Altering Hydrogen Storage 
Properties by Hydride Destabilization through Alloy Formation: LiH and MgH2 
Destabilized with Si. The Journal of Physical Chemistry B, Vol. 108, No. 37, (August 
2004), pp. 13977-13983, ISSN 1520-5207 

Vyas, D., Jain, P., Khan, J., Kulshrestha, V., Jain, A. & Jain, I. (2011). Effect of Cu catalyst on 
the hydrogenation and thermodynamic properties of Mg2Ni. International Journal of 

www.intechopen.com



 
Neutron Diffraction 

 

24

Hydrogen Energy, (In press - available online 20 July 2011), 
doi:10.1016/j.ijhydene.2011.05.143, ISSN 0360-3199 

Xia, G., Leng, H., Xu, N., Li, Z., Wu, Z., Du, J. & Yu, X. (2011). Enhanced hydrogen storage 
properties of LiBH4―MgH2 composite by the catalytic effect of MoCl3. International 
Journal of Hydrogen Energy, Vol. 36, No. 12, (June 2011), pp. 7128-725, ISSN 0360-
3199 

Yakel, H. (1958). Thermocrystallography of higher hydrides of Titanium and Zirconium. 
Acta Crystallographica, Vol. 11, pp. 45-51 

Yang, J., Sudik, A. & Wolverton, C. (2007). Destabilizing LiBH4 with a Metal (M ) Mg, Al, Ti, 
V, Cr, or Sc) or Metal Hydride (MH2 ) MgH2, TiH2, or CaH2). The Journal of Physical 
Chemistry C, Vol. 111, No. 51, (November 2007), pp. 19134-19140, ISSN 1932-7455 

Yim, C., You, B., Na, Y. & Bae, J. (2007). Hydriding properties of Mg–xNi alloys with 
different microstructures. Catalysis Today, Vol. 120, No. 3-4, (February 2007), pp. 
276-280, ISSN 0920-586 

Yvon, K. & Renaudin, G. (2005). Hydrides: Solid State Transition Metal Complexes, In: 
Encyclopedia of Inorganic Chemistry, R. Bruce King (Editor-in-Chief), pp. 1814–1846, 
John Wiley & Sons Ltd, ISBN 0-470-86078-2, Chichester 

Yu, X., Grant, D. & Walker, G. (2006). A new dehydrogenation mechanism for reversible 
multicomponent borohydride systems—The role of Li–Mg alloys. Chemical 
Communications, No. 37, (October 2006), pp. 3906-3908, ISSN 1359-7345 

Zaluska, A., Zaluski, L., & Strom-Olsen, J. (1999a). Nanocrystalline magnesium for hydrogen 
storage. Journal of Alloys and Compounds, Vol. 288, No. 1-2, (June 1999), pp. 217-225, 
ISSN 0925-8388 

Zaluska, A., Zaluski, L., & Strom-Olsen, J. (1999b). Synergy of hydrogen sorption in ball-
milled hydrides of Mg and Mg2Ni. Journal of Alloys and Compounds, Vol. 289, No. 1-
2, (July 1999), pp. 197-206, ISSN 0925-8388 

Zaluski, L., Zaluska, A. & Strom-Olsen, J. (1997). Nanocrystalline metal hydrides. Journal of 
Alloys and Compounds, Vol. 253-254, (May 1997), pp. 70-79, ISSN 0925-8388 

Zhang, J. & Hu, Y. (2011). Decomposition of Lithium Amide and Lithium Imide with and 
without Anion Promoter. Industrial & Engineering Chemistry Research, Vol. 50, No. 
13, (May 2011), pp. 8058–8064, ISSN 0888-5885 

Zhang, Y., Li, B., Ren, H., Guo, S., Zhao, D. & Wang, X. (2010a). Microstructure and 
hydrogen storage characteristics of melt-spun nanocrystalline Mg20Ni10-xCux (x=0-
4) alloys. Materials Chemistry and Physics, Vol. 124, No. 1, (November 2010), pp. 795-
802, ISSN 0254-0584 

Zhang, Y., Li, B., Ren, H., Guo, S., Zhao, D. & Wang, X. (2010b). Hydrogenation and 
dehydrogenation behaviours of nanocrystalline Mg20Ni10−xCux (x = 0−4) alloys 
prepared by melt spinning. International Journal of Hydrogen Energy, Vol. 35, No. 5, 
(March 2010), pp. 2040-2047, ISSN 0360-3199 

Zhang, J., Zhou, D., He, L., Peng, P. & Liu J. (2009). First-principles investigation of Mg2Ni 
phase and high/low temperature Mg2NiH4 complex hydrides. Journal of Physics and 
Chemistry of Solids, Vol. 70, No. 1, (January 2009), pp. 32-39, ISSN 0022-3697 

Zhao-Karger, Z., Hu, J., Roth, A., Wang, D., Kübel, C., Lohstroh, W. & Fichtner, M. (2010). 
Altered thermodynamic and kinetic properties of MgH2 infiltrated in microporous 
scaffold. Chemical Communications, Vol. 46, No. 44, (November 2010), pp. 8353-8355, 
ISSN 1359-7345 

www.intechopen.com



Neutron Diffraction

Edited by Prof. Irisali Khidirov

ISBN 978-953-51-0307-3

Hard cover, 286 pages

Publisher InTech

Published online 14, March, 2012

Published in print edition March, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Now neutron diffraction is widely applied for the research of crystal, magnetic structure and internal stress of

crystalline materials of various classes, including nanocrystalls. In the present book, we make practically short

excursion to modern state of neutron diffraction researches of crystal materials of various classes. The book

contains a helpful information on a modern state of neutron diffraction researches of crystals for the broad

specialists interested in studying crystals and purposeful regulation of their service characteristics, since the

crystal structure, basically, defines their physical and mechanical properties. Some chapters of the book have

methodical character that can be useful to scientists, interested in possibilities of neutron diffraction. We hope,

that results of last years presented in the book, can be a push to new ideas in studying of crystalline, magnetic

structure and a macrostructure of usual crystal materials and nanocrystals. In turn, it can promote working out

of new materials with new improved service characteristics and to origin of innovative ideas.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

M. Helena Braga, Michael J. Wolverton, Maria H. de Sá and Jorge A. Ferreira (2012). Hydrides of Cu and Mg

Intermetallic Systems: Characterization and Catalytic Function, Neutron Diffraction, Prof. Irisali Khidirov (Ed.),

ISBN: 978-953-51-0307-3, InTech, Available from: http://www.intechopen.com/books/neutron-

diffraction/hydrides-of-cu-and-mg-intermetallic-systems-characterization-catalytic-function-and-applications



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


