2,242 research outputs found

    Search for spontaneous muon emission from lead nuclei

    Full text link
    We describe a possible search for muonic radioactivity from lead nuclei using the base elements ("bricks" composed by lead and nuclear emulsion sheets) of the long-baseline OPERA neutrino experiment. We present the results of a Monte Carlo simulation concerning the expected event topologies and estimates of the background events. Using few bricks, we could reach a good sensitivity level.Comment: 12 pages, 4 figure

    Proposal for taking data with the KLOE-2 detector at the DAΦ\PhiNE collider upgraded in energy

    Get PDF
    This document reviews the physics program of the KLOE-2 detector at DAΦ\PhiNE upgraded in energy and provides a simple solution to run the collider above the ϕ\phi-peak (up to 2, possibly 2.5 GeV). It is shown how a precise measurement of the multihadronic cross section in the energy region up to 2 (possibly 2.5) GeV would have a major impact on the tests of the Standard Model through a precise determination of the anomalous magnetic moment of the muon and the effective fine-structure constant at the MZM_Z scale. With a luminosity of about 103210^{32}cm2^{-2}s1^{-1}, DAΦ\PhiNE upgraded in energy can perform a scan in the region from 1 to 2.5 GeV in one year by collecting an integrated luminosity of 20 pb1^{-1} (corresponding to a few days of data taking) for single point, assuming an energy step of 25 MeV. A few years of data taking in this region would provide important tests of QCD and effective theories by γγ\gamma\gamma physics with open thresholds for pseudo-scalar (like the η\eta'), scalar (f0,f0f_0,f'_0, etc...) and axial-vector (a1a_1, etc...) mesons; vector-mesons spectroscopy and baryon form factors; tests of CVC and searches for exotics. In the final part of the document a technical solution for the energy upgrade of DAΦ\PhiNE is proposed.Comment: 19 pages, 8 figure

    Prospects for the measurement of muon-neutrino disappearance at the FNAL-Booster

    Full text link
    Neutrino physics is nowadays receiving more and more attention as a possible source of information for the long-standing problem of new physics beyond the Standard Model. The recent measurement of the mixing angle θ13\theta_{13} in the standard mixing oscillation scenario encourages us to pursue the still missing results on leptonic CP violation and absolute neutrino masses. However, puzzling measurements exist that deserve an exhaustive evaluation. The NESSiE Collaboration has been setup to undertake conclusive experiments to clarify the muon-neutrino disappearance measurements at small L/EL/E, which will be able to put severe constraints to models with more than the three-standard neutrinos, or even to robustly measure the presence of a new kind of neutrino oscillation for the first time. To this aim the use of the current FNAL-Booster neutrino beam for a Short-Baseline experiment has been carefully evaluated. This proposal refers to the use of magnetic spectrometers at two different sites, Near and Far. Their positions have been extensively studied, together with the possible performances of two OPERA-like spectrometers. The proposal is constrained by availability of existing hardware and a time-schedule compatible with the CERN project for a new more performant neutrino beam, which will nicely extend the physics results achievable at the Booster. The possible FNAL experiment will allow to clarify the current νμ\nu_{\mu} disappearance tension with νe\nu_e appearance and disappearance at the eV mass scale. Instead, a new CERN neutrino beam would allow a further span in the parameter space together with a refined control of systematics and, more relevant, the measurement of the antineutrino sector, by upgrading the spectrometer with detectors currently under R&D study.Comment: 76 pages, 52 figure

    Search for anomalies in the neutrino sector with muon spectrometers and large LArTPC imaging detectors at CERN

    Full text link
    A new experiment with an intense ~2 GeV neutrino beam at CERN SPS is proposed in order to definitely clarify the possible existence of additional neutrino states, as pointed out by neutrino calibration source experiments, reactor and accelerator experiments and measure the corresponding oscillation parameters. The experiment is based on two identical LAr-TPCs complemented by magnetized spectrometers detecting electron and muon neutrino events at Far and Near positions, 1600 m and 300 m from the proton target, respectively. The ICARUS T600 detector, the largest LAr-TPC ever built with a size of about 600 ton of imaging mass, now running in the LNGS underground laboratory, will be moved at the CERN Far position. An additional 1/4 of the T600 detector (T150) will be constructed and located in the Near position. Two large area spectrometers will be placed downstream of the two LAr-TPC detectors to perform charge identification and muon momentum measurements from sub-GeV to several GeV energy range, greatly complementing the physics capabilities. This experiment will offer remarkable discovery potentialities, collecting a very large number of unbiased events both in the neutrino and antineutrino channels, largely adequate to definitely settle the origin of the observed neutrino-related anomalies.Comment: Contribution to the European Strategy for Particle Physics - Open Symposium Preparatory Group, Kracow 10-12 September 201

    Determination of the muon charge sign with the dipolar spectrometers of the OPERA experiment

    Full text link
    The OPERA long-baseline neutrino-oscillation experiment has observed the direct appearance of ντ\nu_\tau in the CNGS νμ\nu_\mu beam. Two large muon magnetic spectrometers are used to identify muons produced in the τ\tau leptonic decay and in νμCC\nu_\mu^{CC} interactions by measuring their charge and momentum. Besides the kinematic analysis of the τ\tau decays, background resulting from the decay of charmed particles produced in νμCC\nu_\mu^{CC} interactions is reduced by efficiently identifying the muon track. A new method for the charge sign determination has been applied, via a weighted angular matching of the straight track-segments reconstructed in the different parts of the dipole magnets. Results obtained for Monte Carlo and real data are presented. Comparison with a method where no matching is used shows a significant reduction of up to 40\% of the fraction of wrongly determined charges.Comment: 10 pages. Improvements in the tex

    Limits on muon-neutrino to tau-neutrino oscillations induced by a sterile neutrino state obtained by OPERA at the CNGS beam

    Get PDF
    The OPERA experiment, exposed to the CERN to Gran Sasso νμ\nu_\mu beam, collected data from 2008 to 2012. Four oscillated ντ\nu_\tau Charged Current interaction candidates have been detected in appearance mode, which are consistent with νμντ\nu_\mu \to \nu_\tau oscillations at the atmospheric Δm2\Delta m^2 within the "standard" three-neutrino framework. In this paper, the OPERA ντ\nu_\tau appearance results are used to derive limits on the mixing parameters of a massive sterile neutrino.Comment: 11 pages, 4 figures; reference to Planck result updated in the Introduction. Submitted to JHE

    Kinetic modeling studies of heterogeneously catalyzed biodiesel synthesis reactions

    Get PDF
    The heterogeneously catalyzed transesterification reaction for the production of biodiesel from triglycerides was investigated for reaction mechanism and kinetic constants. Three elementary reaction mechanisms Eley-Rideal (ER), Langmuir-Hinshelwood-Hougen-Watson (LHHW), and Hattori with assumptions, such as quasi-steady-state conditions for the surface species and methanol adsorption, and surface reactions as the rate-determining steps were applied to predict the catalyst surface coverage and the bulk concentration using a multiscale simulation framework. The rate expression based on methanol adsorption as the rate limiting in LHHW elementary mechanism has been found to be statistically the most reliable representation of the experimental data using hydrotalcite catalyst with different formulations

    Observation of nu_tau appearance in the CNGS beam with the OPERA experiment

    Get PDF
    The OPERA experiment is searching for nu_mu -> nu_tau oscillations in appearance mode i.e. via the direct detection of tau leptons in nu_tau charged current interactions. The evidence of nu_mu -> nu_tau appearance has been previously reported with three nu_tau candidate events using a sub-sample of data from the 2008-2012 runs. We report here a fourth nu_tau candidate event, with the tau decaying into a hadron, found after adding the 2012 run events without any muon in the final state to the data sample. Given the number of analysed events and the low background, nu_mu -> nu_tau oscillations are established with a significance of 4.2sigma.Comment: Submitted to Progress of Theoretical and Experimental Physics (PTEP

    Evidence for νμντ\nu_\mu \to \nu_\tau appearance in the CNGS neutrino beam with the OPERA experiment

    Full text link
    The OPERA experiment is designed to search for νμντ\nu_{\mu} \rightarrow \nu_{\tau} oscillations in appearance mode i.e. through the direct observation of the τ\tau lepton in ντ\nu_{\tau} charged current interactions. The experiment has taken data for five years, since 2008, with the CERN Neutrino to Gran Sasso beam. Previously, two ντ\nu_{\tau} candidates with a τ\tau decaying into hadrons were observed in a sub-sample of data of the 2008-2011 runs. Here we report the observation of a third ντ\nu_\tau candidate in the τμ\tau^-\to\mu^- decay channel coming from the analysis of a sub-sample of the 2012 run. Taking into account the estimated background, the absence of νμντ\nu_{\mu} \rightarrow \nu_{\tau} oscillations is excluded at the 3.4 σ\sigma level.Comment: 9 pages, 5 figures, 1 table
    corecore