1,404 research outputs found

    Temperature dependence of the angle resolved photoemission spectra in the undoped cuprates: self-consistent approach to the t-J-Holstein model

    Full text link
    We develop a novel self-consistent approach for studying the angle resolved photoemission spectra (ARPES) of a hole in the t-J-Holstein model giving perfect agreement with numerically exact Diagrammatic Monte Carlo data at zero temperature for all regimes of electron-phonon coupling. Generalizing the approach to finite temperatures we find that the anomalous temperature dependence of the ARPES in undoped cuprates is explained by cooperative interplay of coupling of the hole to magnetic fluctuations and strong electron-phonon interaction.Comment: 5 pages, 4 figure

    Mesoscopic continuous and discrete channels for quantum information transfer

    Full text link
    We study the possibility of realizing perfect quantum state transfer in mesoscopic devices. We discuss the case of the Fano-Anderson model extended to two impurities. For a channel with an infinite number of degrees of freedom, we obtain coherent behavior in the case of strong coupling or in weak coupling off-resonance. For a finite number of degrees of freedom, coherent behavior is associated to weak coupling and resonance conditions

    Collective excitations and low temperature transport properties of bismuth

    Full text link
    We examine the influence of collective excitations on the transport properties (resistivity, magneto- optical conductivity) for semimetals, focusing on the case of bismuth. We show, using an RPA approximation, that the properties of the system are drastically affected by the presence of an acoustic plasmon mode, consequence of the presence of two types of carriers (electrons and holes) in this system. We found a crossover temperature T* separating two different regimes of transport. At high temperatures T > T* we show that Baber scattering explains quantitatively the DC resistivity experiments, while at low temperatures T < T* interactions of the carriers with this collective mode lead to a T^5 behavior of the resistivity. We examine other consequences of the presence of this mode, and in particular predict a two plasmon edge feature in the magneto-optical conductivity. We compare our results with the experimental findings on bismuth. We discuss the limitations and extensions of our results beyond the RPA approximation, and examine the case of other semimetals such as graphite or 1T-TiSe_2

    Dual quantum-correlation paradigms exhibit opposite statistical-mechanical properties

    Full text link
    We report opposite statistical mechanical behaviors of the two major paradigms in which quantum correlation measures are defined, viz., the entanglement-separability paradigm and the information-theoretic one. We show this by considering the ergodic properties of such quantum correlation measures in transverse quantum XY spin-1/2 systems in low dimensions. While entanglement measures are ergodic in such models, the quantum correlation measures defined from an information-theoretic perspective can be nonergodic.Comment: 8 pages, 5 figures, REVTeX 4.1; v2: published version, 9 page

    Artifact of the phonon-induced localization by variational calculations in the spin-boson model

    Full text link
    We present energy and free energy analyses on all variational schemes used in the spin-boson model at both T=0 and T≠0T\neq0. It is found that all the variational schemes have fail points, at where the variational schemes fail to provide a lower energy (or a lower free energy at T≠0T\neq0) than the displaced-oscillator ground state and therefore the variational ground state becomes unstable, which results in a transition from a variational ground state to a displaced oscillator ground state when the fail point is reached. Such transitions are always misidentied as crossover from a delocalized to localized phases in variational calculations, leading to an artifact of phonon-induced localization. Physics origin of the fail points and explanations for different transition behaviors with different spectral functions are found by studying the fail points of the variational schemes in the single mode case.Comment: 9 pages, 7 figure

    Many-body Green's function approach to attosecond nonlinear X-ray spectroscopy

    Full text link
    Closed expressions are derived for resonant multidimensional X-ray spectroscopy using the quasiparticle nonlinear exciton representation of optical response. This formalism is applied to predict coherent four wave mixing signals which probe single and two core-hole states. Nonlinear X-ray signals are compactly expressed in terms of one- and two- particle Green's functions which can be obtained from the solution of Hedin-like equations at the GWGW level.Comment: 10 pages and 3 figures (To appear in Physical Review B

    Prerequisite for superconductivity: appropriate spin-charge correlations

    Full text link
    This work investigates the relation between superconductivity and correlations. A simple calculation shows that the appropriate spin-charge correlation is the key role to any superconductivity, and this calculation is consistent with the analyses of unusual properties of superconductors. (Note: the Tc of this model is not given clearly in this work, but we have advanced this mechanism to a t-x model which includes various superconductivities and magnetisms (please see arXiv:0707.3660 and following works).)Comment: 7page

    Plasmon assisted transport through disordered array of quantum wires

    Full text link
    Phononless plasmon assisted thermally activated transport through a long disordered array of finite length quantum wires is investigated analytically. Generically strong electron plasmon interaction in quantum wires results in a qualitative change of the temperature dependence of thermally activated resistance in comparison to phonon assisted transport. At high temperatures, the thermally activated resistance is determined by the Luttinger liquid interaction parameter of the wires.Comment: 7 pages, 1 figure, final version as publishe

    Optical properties and one-particle spectral function in non-ideal plasmas

    Get PDF
    A basic concept to calculate physical features of non-ideal plasmas, such as optical properties, is the spectral function which is linked to the self-energy. We calculate the spectral function for a non-relativistic hydrogen plasma in GWGW-approximation. In order to go beyond GWGW approximation, we include self-energy and vertex correction to the polarization function in lowest order. Partial compensation is observed. The relation of our approach to GWGW and GWΓGW\Gamma calculations in other fields, such as the band-structure calculations in semiconductor physics, is discussed. From the spectral function we derive the absorption coefficient due to inverse bremsstrahlung via the polarization function. As a result, a significant reduction of the absorption as compared to the Bethe-Heitler formula for bremsstrahlung is obtained.Comment: 13 pages, 7 figures, 52 references. Submitted to Contrib. Plasma Phys. Results presented at the International Workshop on Physics of Non-ideal Plasmas (PNP12), Darmstadt, sept. 4.-8. 200

    A Non-equilibrium STM model for Kondo Resonance on surface

    Full text link
    Based on a no-equilibrium STM model, we study Kondo resonance on a surface by self-consistent calculations. The shapes of tunneling spectra are dependent on the energy range of tunneling electrons. Our results show that both energy-cutoff and energy-window of tunneling electrons have significant influence on the shapes of tunneling spectra. If no energy-cutoff is used, the Kondo resonances in tunneling spectrum are peaks with the same shapes in the density of state of absorbed magnetic atoms. This is just the prediction of Tersoff theory. If we use an energy cutoff to remove high-energy lectrons, a dip structure will modulate the Kondo resonance peak in the tunneling spectrum. The real shape of Kondo peak is the mixing of the peak and dip, the so-called Fano line shape. The method of self-consistent non-equilibrium matrix Green function is discussed in details.Comment: 11 pages and 8 eps figur
    • …
    corecore