2,294 research outputs found

    Moduli and electromagnetic black brane holography

    Get PDF
    We investigate the thermodynamic and hydrodynamic properties of 4-dimensional gauge theories with finite electric charge density in the presence of a constant magnetic field. Their gravity duals are planar magnetically and electrically charged AdS black holes in theories that contain a gauge Chern-Simons term. We present a careful analysis of the near horizon geometry of these black branes at finite and zero temperature for the case of a scalar field non-minimally coupled to the electromagnetic field. With the knowledge of the near horizon data, we obtain analytic expressions for the shear viscosity coefficient and entropy density, and also study the effect of a generic set of four derivative interactions on their ratio. We also comment on the attractor flows of the extremal solutions.Comment: 39 pages, no figures; v2: minor changes, refs. added; v3: typo fixed; v4: a proof for decoupling of the viscosity mode added in appendix, matches the published versio

    Early-Time Energy Loss in a Strongly-Coupled SYM Plasma

    Full text link
    We carry out an analytic study of the early-time motion of a quark in a strongly-coupled maximally-supersymmetric Yang-Mills plasma, using the AdS/CFT correspondence. Our approach extracts the first thermal effects as a small perturbation of the known quark dynamics in vacuum, using a double expansion that is valid for early times and for (moderately) ultrarelativistic quark velocities. The quark is found to lose energy at a rate that differs significantly from the previously derived stationary/late-time result: it scales like T^4 instead of T^2, and is associated with a friction coefficient that is not independent of the quark momentum. Under conditions representative of the quark-gluon plasma as obtained at RHIC, the early energy loss rate is a few times smaller than its late-time counterpart. Our analysis additionally leads to thermally-corrected expressions for the intrinsic energy and momentum of the quark, in which the previously discovered limiting velocity of the quark is found to appear naturally.Comment: 39 pages, no figures. v2: Minor corrections and clarifications. References added. Version to be published in JHE

    Extended genetic diversity of bovine viral diarrhea virus and frequency of genotypes and subtypes in cattle in Italy between 1995 and 2013

    Get PDF
    Genetic typing of bovine viral diarrhea virus (BVDV) has distinguished BVDV-1 and BVDV-2 species and an emerging putative third species (HoBi-like virus), recently detected in southern Italy, signaling the occurrence of natural infection in Europe. Recognizing the need to update the data on BVDV genetic variability in Italy for mounting local and European alerts, a wide collection of 5 \u2032 UTR sequences (n = 371) was selected to identify the frequency of genotypes and subtypes at the herd level. BVDV-1 had the highest frequency, followed by sporadic BVDV-2. No novel HoBi-like viruses were identified. Four distribution patterns of BVDV-1 subtypes were observed: highly prevalent subtypes with a wide temporal-spatial distribution (1b and 1e), low prevalent subtypes with a widespread geographic distribution (1a, 1d, 1g, 1h, and 1k) or a restricted geographic distribution (1f), and sporadic subtypes detected only in single herds (1c, 1j, and 1l). BVDV-1c, k, and l are reported for the first time in Italy. A unique genetic variant was detected in the majority of herds, but cocirculation of genetic variants was also observed. Northern Italy ranked first for BVDV introduction, prevalence, and dispersion. Nevertheless, the presence of sporadic variants in other restricted areas suggests the risk of different routes of BVDV introduction

    DeepBacs for multi-task bacterial image analysis using open-source deep learning approaches

    Get PDF
    This work demonstrates and guides how to use a range of state-of-the-art artificial neural-networks to analyse bacterial microscopy images using the recently developed ZeroCostDL4Mic platform. We generated a database of image datasets used to train networks for various image analysis tasks and present strategies for data acquisition and curation, as well as model training. We showcase different deep learning (DL) approaches for segmenting bright field and fluorescence images of different bacterial species, use object detection to classify different growth stages in time-lapse imaging data, and carry out DL-assisted phenotypic profiling of antibiotic-treated cells. To also demonstrate the ability of DL to enhance low-phototoxicity live-cell microscopy, we showcase how image denoising can allow researchers to attain high-fidelity data in faster and longer imaging. Finally, artificial labelling of cell membranes and predictions of super-resolution images allow for accurate mapping of cell shape and intracellular targets. Our purposefully-built database of training and testing data aids in novice users' training, enabling them to quickly explore how to analyse their data through DL. We hope this lays a fertile ground for the efficient application of DL in microbiology and fosters the creation of tools for bacterial cell biology and antibiotic research.DeepBacs guides users without expertise in machine learning methods to leverage state-of-the-art artificial neural networks to analyse bacterial microscopy images

    DeepBacs for multi-task bacterial image analysis using open-source deep learning approaches

    Get PDF
    This work demonstrates and guides how to use a range of state-of-the-art artificial neural-networks to analyse bacterial microscopy images using the recently developed ZeroCostDL4Mic platform. We generated a database of image datasets used to train networks for various image analysis tasks and present strategies for data acquisition and curation, as well as model training. We showcase different deep learning (DL) approaches for segmenting bright field and fluorescence images of different bacterial species, use object detection to classify different growth stages in time-lapse imaging data, and carry out DL-assisted phenotypic profiling of antibiotic-treated cells. To also demonstrate the ability of DL to enhance low-phototoxicity live-cell microscopy, we showcase how image denoising can allow researchers to attain high-fidelity data in faster and longer imaging. Finally, artificial labelling of cell membranes and predictions of super-resolution images allow for accurate mapping of cell shape and intracellular targets. Our purposefully-built database of training and testing data aids in novice users’ training, enabling them to quickly explore how to analyse their data through DL. We hope this lays a fertile ground for the efficient application of DL in microbiology and fosters the creation of tools for bacterial cell biology and antibiotic research
    • …
    corecore