4,796 research outputs found
Analysis of thermal field within an urban canyon with variable thermophysical characteristics of the building's walls.
In a typical urban configuration, a microclimatic analysis has been carried out. Using a CFD method, a N-S oriented urban street canyon, with a given H/W ratio, has been examined. The standard k–ε turbulence model has been used to simulate a three-dimensional flow field and to calculate the thermo-fluid dynamics parameters that characterize the street canyon. In this study has been analyzed the thermal flow field when the walls of the building change the properties of solar radiation absorption, in particular for α=0.2 and α=0.8. Solar radiation considered is that of 21/07 in Milan in two different hours: at 11:00 a.m. and at 02:00 p.m. The study shows the importance of the thermophysical properties of a wall, in the development of the thermal field and flow field. This is a very important topic, in terms of improvement of well-being and the quality of the air within the cities, through the choice of materials and colors of the facades of buildings.
Comment to the Description of a Novel Cohesinopathy in Chronic Intestinal Pseudo Obstruction
Not availabl
Sensitivity to wheat, gluten and FODMAPs in IBS: Facts or fiction?
IBS is one of the most common types of functional bowel disorder. Increasing attention has been paid to the causative role of food in IBS. Food ingestion precipitates or exacerbates symptoms, such as abdominal pain and bloating in patients with IBS through different hypothesised mechanisms including immune and mast cell activation, mechanoreceptor stimulation and chemosensory activation. Wheat is regarded as one of the most relevant IBS triggers, although which component(s) of this cereal is/are involved remain(s) unknown. Gluten, other wheat proteins, for example, amylase-trypsin inhibitors, and fructans (the latter belonging to fermentable oligo-di-mono-saccharides and polyols (FODMAPs)), have been identified as possible factors for symptom generation/exacerbation. This uncertainty on the true culprit(s) opened a scenario of semantic definitions favoured by the discordant results of double-blind placebo-controlled trials, which have generated various terms ranging from non-coeliac gluten sensitivity to the broader one of non-coeliac wheat or wheat protein sensitivity or, even, FODMAP sensitivity. The role of FODMAPs in eliciting the clinical picture of IBS goes further since these short-chain carbohydrates are found in many other dietary components, including vegetables and fruits. In this review, we assessed current literature in order to unravel whether gluten/wheat/FODMAP sensitivity represent 'facts' and not 'fiction' in IBS symptoms. This knowledge is expected to promote standardisation in dietary strategies (gluten/wheat-free and low FODMAP) as effective measures for the management of IBS symptoms
Advancement in the clinical management of intestinal pseudo-obstruction
Intestinal pseudo-obstruction is more commonly known in its chronic form (CIPO), a cluster of rare diseases characterized by gastrointestinal muscle and nerve impairment, so severe to result in a markedly compromised peristalsis mimicking an intestinal occlusion. The management of CIPO requires the cooperation of a group of specialists: the disease has to be confirmed by a number of tests to avoid mistakes in the differential diagnosis. The treatment should be aimed at relieving symptoms arising from gut dysmotility (ideally using prokinetic agents), controlling abdominal pain (possibly with non-opioid antinociceptive drugs) and optimizing nutritional support. Furthermore, a thorough diagnostic work-up is mandatory to avoid unnecessary (potentially harmful) surgery and to select patients with clear indication to intestinal or multivisceral transplantation
A parallel interaction potential approach coupled with the immersed boundary method for fully resolved simulations of deformable interfaces and membranes
In this paper we show and discuss the use of a versatile interaction
potential approach coupled with an immersed boundary method to simulate a
variety of flows involving deformable bodies. In particular, we focus on two
kinds of problems, namely (i) deformation of liquid-liquid interfaces and (ii)
flow in the left ventricle of the heart with either a mechanical or a natural
valve. Both examples have in common the two-way interaction of the flow with a
deformable interface or a membrane. The interaction potential approach (de
Tullio & Pascazio, Jou. Comp. Phys., 2016; Tanaka, Wada and Nakamura,
Computational Biomechanics, 2016) with minor modifications can be used to
capture the deformation dynamics in both classes of problems. We show that the
approach can be used to replicate the deformation dynamics of liquid-liquid
interfaces through the use of ad-hoc elastic constants. The results from our
simulations agree very well with previous studies on the deformation of drops
in standard flow configurations such as deforming drop in a shear flow or a
cross flow. We show that the same potential approach can also be used to study
the flow in the left ventricle of the heart. The flow imposed into the
ventricle interacts dynamically with the mitral valve (mechanical or natural)
and the ventricle which are simulated using the same model. Results from these
simulations are compared with ad- hoc in-house experimental measurements.
Finally, a parallelisation scheme is presented, as parallelisation is
unavoidable when studying large scale problems involving several thousands of
simultaneously deforming bodies on hundreds of distributed memory computing
processors
A metabolomic approach to animal vitreous humor topographical composition: A pilot study
The purpose of this study was to evaluate the feasibility of a 1H-NMR-based metabolomic approach to explore the
metabolomic signature of different topographical areas of vitreous humor (VH) in an animal model. Five ocular globes were
enucleated from five goats and immediately frozen at 280uC. Once frozen, three of them were sectioned, and four samples
corresponding to four different VH areas were collected: the cortical, core, and basal, which was further divided into a
superior and an inferior fraction. An additional two samples were collected that were representative of the whole vitreous
body. 1H-NMR spectra were acquired for twenty-three goat vitreous samples with the aim of characterizing the
metabolomic signature of this biofluid and identifying whether any site-specific patterns were present. Multivariate
statistical analysis (MVA) of the spectral data were carried out, including Principal Component Analysis (PCA), Hierarchical
Cluster Analysis (HCA), and Partial Least Squares Discriminant Analysis (PLS-DA). A unique metabolomic signature belonging
to each area was observed. The cortical area was characterized by lactate, glutamine, choline, and its derivatives, N-acetyl
groups, creatine, and glycerol; the core area was characterized by glucose, acetate, and scyllo-inositol; and the basal area
was characterized by branched-chain amino acids (BCAA), betaine, alanine, ascorbate, lysine, and myo-inositol. We propose
a speculative approach on the topographic role of these molecules that are mainly responsible for metabolic differences
among the as-identified areas. 1H-NMR-based metabolomic analysis has shown to be an important tool for investigating the
VH. In particular, this approach was able to assess in the samples here analyzed the presence of different functional areas on
the basis of a different metabolite distribution.The purpose of this study was to evaluate the feasibility of a 1H-NMR-based metabolomic approach to explore the metabolomic signature of different topographical areas of vitreous humor (VH) in an animal model. Five ocular globes were enucleated from five goats and immediately frozen at -80°C. Once frozen, three of them were sectioned, and four samples corresponding to four different VH areas were collected: the cortical, core, and basal, which was further divided into a superior and an inferior fraction. An additional two samples were collected that were representative of the whole vitreous body. 1H-NMR spectra were acquired for twenty-three goat vitreous samples with the aim of characterizing the metabolomic signature of this biofluid and identifying whether any site-specific patterns were present. Multivariate statistical analysis (MVA) of the spectral data were carried out, including Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), and Partial Least Squares Discriminant Analysis (PLS-DA). A unique metabolomic signature belonging to each area was observed. The cortical area was characterized by lactate, glutamine, choline, and its derivatives, N-acetyl groups, creatine, and glycerol; the core area was characterized by glucose, acetate, and scyllo-inositol; and the basal area was characterized by branched-chain amino acids (BCAA), betaine, alanine, ascorbate, lysine, and myo-inositol. We propose a speculative approach on the topographic role of these molecules that are mainly responsible for metabolic differences among the as-identified areas. 1H-NMR-based metabolomic analysis has shown to be an important tool for investigating the VH. In particular, this approach was able to assess in the samples here analyzed the presence of different functional areas on the basis of a different metabolite distribution. © 2014 Locci et al
The effects of low enthalpy geothermal system on groundwater of the Cesine wetland
Cesine Wetland, Salento, low-enthalpy geothermal power plant, heat transport numerical model
Pyridostigmine in pediatric Intestinal pseudo-obstruction. case report of a 2-year old girl and literature review
Pediatric chronic intestinal pseudo-obstruction is a rare disorder characterized by a severe impairment of gastrointestinal motility leading to intestinal obstruction symptoms in the absence of mechanical causes. The diagnosis is usually clinical and diagnostic work is usually aimed to rule out mechanical obstruction and to identify any underlying diseases. Treatment is challenging and requires a multidisciplinary effort. In this manuscript we describe the youngest child successfully treated with the orally administrable, longacting, reversible anti-cholinesterase drug, pyridostigmine. Like other drugs belonging to cholinesterase inhibitors, pyridostigmine enhances gut motility by increasing acetylcholine availability in the enteric nervous system and neuro-muscular junctions. Based on the direct evidence from the reported case, we reviewed the current literature on the use of pyridostigmine in severe pediatric dysmotility focusing on intestinal pseudo-obstruction. The overall data emerged from the few published studies suggest that pyridostigmine is an effective and usually well tolerated therapeutic options for patients with intestinal pseudo-obstruction. More specifically, the main results obtained by pyridostigmine included marked reduction of abdominal distension, reduced need of parenteral nutrition, and improvement of oral feeding. The present case and review on pyridostigmine pave the way for eagerly awaited future randomized controlled studies testing the efficacy of cholinesterase inhibitors in pediatric severe gut dysmotility
Automated collection of real-time alerts of citizens as a useful tool to continuously monitor malodorous emissions
The evaluation of odor emissions and dispersion is a very arduous topic to face; the real-time monitoring of odor emissions, the identification of chemical components and, with proper certainty, the source of annoyance represent a challenge for stakeholders such as local authorities. The complaints of people, often not systematic and variously distributed, in general do not allow us to quantify the perceived annoyance. Experimental research has been performed to detect and evaluate olfactory annoyance, based on field testing of an innovative monitoring methodology grounded in automatic recording of citizen alerts. It has been applied in Taranto, in the south of Italy where a relevant industrial area is located, by using Odortel® for automated collection of citizen alerts. To evaluate its reliability, the collection system has been integrated with automated samplers, able to sample odorous air in real time, according to the citizen alerts of annoyance and, moreover, with meteorological data (especially the wind direction) and trends in odor marker compounds, recorded by air quality monitoring stations. The results have allowed us, for the first time, to manage annoyance complaints, test their reliability, and obtain information about the distribution and entity of the odor phenomena, such that we were able to identify, with supporting evidence, the source as an oil refinery plant
- …