307 research outputs found

    Performance and membrane fouling of two types of laboratory-scale submerged membrane bioreactors for hospital wastewater treatment at low flux condition

    Full text link
    © 2016 Elsevier B.V. All rights reserved. The performance and membrane fouling of a lab-scale submerged sponge-membrane bioreactor (Sponge-MBR) and a conventional MBR were investigated and compared for hospital wastewater treatment at low fluxes of 2-6 LMH. COD removal by the Sponge-MBR was similar to that of the MBR, while the Sponge-MBR achieved 9-16% removed more total nitrogen than the MBR. This was due to 60% of total biomass being entrapped in the sponges, which enhanced simultaneous nitrification denitrification. Additionally, the fouling rates of the Sponge-MBR were 11-, 6.2- and 3.8-times less than those of the MBR at flux rates of 2, 4 and 6 LMH, respectively. It indicates the addition of sponge media into a MBR could effectively reduce the fouling caused by cake formation and absorption of soluble substances in a low flux scenario

    Wastewater treatment and biomass growth of eight plants for shallow bed wetland roofs

    Full text link
    © 2017 Elsevier Ltd Wetland roof (WR) could bring many advantages for tropical cities such as thermal benefits, flood control, green coverage and domestic wastewater treatment. This study investigates wastewater treatment and biomass growth of eight local plants in shallow bed WRs. Results showed that removal rates of WRs were 21–28 kg COD ha−1 day−1, 9–13 kg TN ha−1 day−1 and 0.5–0.9 kg TP ha−1 day−1, respectively. The plants generated more biomass at lower hydraulic loading rate (HLR). Dry biomass growth was 0.4–28.1 g day−1 for average HLR of 247–403 m3 ha−1 day−1. Green leaf area of the plants was ranging as high as 67–99 m2 leaves per m2 of WR. In general, the descent order of Kyllinga brevifoliaRottb (WR8), Cyperus javanicus Houtt (WR5) and Imperata cylindrical (WR4) was suggested as effective vegetations in WR conditions in terms of wastewater treatment, dry biomass growth and green coverage ratio

    Selective carbon sources and salinities enhance enzymes and extracellular polymeric substances extrusion of Chlorella sp. for potential co-metabolism.

    Full text link
    This study investigated the extracellular polymeric substance (EPS) and enzyme extrusion of Chlorella sp. using seven carbon sources and two salinities for potential pollutant co-metabolism. Results indicated that the levels of biomass, EPS and enzymes of microalgae cultured with glucose and saccharose outcompeted other carbon sources. For pigment production, glycine received the highest chlorophyll and carotene, up to 10 mg/L. The EPS reached 30 mg/L, having doubled the amount of protein than carbohydrate. For superoxide dismutase and peroxidase enzymes, the highest concentrations were beyond 60 U/ml and 6 nmol/d.ml, respectively. This amount could be potentially used for degrading 40% ciprofloxacin of concentration 2000 µg/L. When increasing salinity from 0.1% to 3.5%, the concentrations of pigment, EPS and enzymes rose 3 to 30 times. These results highlighted that certain carbon sources and salinities could induce Chlorella sp. to produce EPS and enzymes for pollutant co-metabolism and also for revenue-raising potential

    Adsorption mechanism of hexavalent chromium onto layered double hydroxides-based adsorbents: A systematic in-depth review

    Full text link
    © 2019 Elsevier B.V. An attempt has been made in this review to provide some insights into the possible adsorption mechanisms of hexavalent chromium onto layered double hydroxides-based adsorbents by critically examining the past and present literature. Layered double hydroxides (LDH) nanomaterials are typical dual-electronic adsorbents because they exhibit positively charged external surfaces and abundant interlayer anions. A high positive zeta potential value indicates that LDH has a high affinity to Cr(VI) anions in solution through electrostatic attraction. The host interlayer anions (i.e., Cl−, NO3−, SO42−, and CO32−) provide a high anion exchange capacity (53–520 meq/100 g) which is expected to have an excellent exchangeable capacity to Cr(VI) oxyanions in water. Regarding the adsorption-coupled reduction mechanism, when Cr(VI) anions make contact with the electron-donor groups in the LDH, they are partly reduced to Cr(III) cations. The reduced Cr(III) cations are then adsorbed by LDH via numerous interactions, such as isomorphic substitution and complexation. Nonetheless, the adsorption-coupled reduction mechanism is greatly dependent on: (1) the nature of divalent and trivalent salts utilized in LDH preparation, and the types of interlayer anions (i.e., guest intercalated organic anions), and (3) the adsorption experiment conditions. The low Brunauer–Emmett–Teller specific surface area of LDH (1.80–179 m2/g) suggests that pore filling played an insignificant role in Cr(VI) adsorption. The Langmuir maximum adsorption capacity of LDH (Qomax) toward Cr(VI) was significantly affected by the natures of used inorganic salts and synthetic methods of LDH. The Qomax values range from 16.3 mg/g to 726 mg/g. Almost all adsorption processes of Cr(VI) by LDH-based adsorbent occur spontaneously (ΔG° 0) and increase the randomness (ΔS° >0) in the system. Thus, LDH has much potential as a promising material that can effectively remove anion pollutants, especially Cr(VI) anions in industrial wastewater

    Monitoring Cognitive and Emotional Processes Through Pupil and Cardiac Response During Dynamic Versus Logical Task

    Get PDF
    The paper deals with the links between physiological measurements and cognitive and emotional functioning. As long as the operator is a key agent in charge of complex systems, the definition of metrics able to predict his performance is a great challenge. The measurement of the physiological state is a very promising way but a very acute comprehension is required; in particular few studies compare autonomous nervous system reactivity according to specific cognitive processes during task performance and task related psychological stress is often ignored. We compared physiological parameters recorded on 24 healthy subjects facing two neuropsychological tasks: a dynamic task that require problem solving in a world that continually evolves over time and a logical task representative of cognitive processes performed by operators facing everyday problem solving. Results showed that the mean pupil diameter change was higher during the dynamic task; conversely, the heart rate was more elevated during the logical task. Finally, the systolic blood pressure seemed to be strongly sensitive to psychological stress. A better taking into account of the precise influence of a given cognitive activity and both workload and related task-induced psychological stress during task performance is a promising way to better monitor operators in complex working situations to detect mental overload or pejorative stress factor of error

    Hedgehog pathway mutations drive oncogenic transformation in high-risk T-cell acute lymphoblastic leukemia.

    Get PDF
    The role of Hedgehog signaling in normal and malignant T-cell development is controversial. Recently, Hedgehog pathway mutations have been described in T-ALL, but whether mutational activation of Hedgehog signaling drives T-cell transformation is unknown, hindering the rationale for therapeutic intervention. Here, we show that Hedgehog pathway mutations predict chemotherapy resistance in human T-ALL, and drive oncogenic transformation in a zebrafish model of the disease. We found Hedgehog pathway mutations in 16% of 109 childhood T-ALL cases, most commonly affecting its negative regulator PTCH1. Hedgehog mutations were associated with resistance to induction chemotherapy (P = 0.009). Transduction of wild-type PTCH1 into PTCH1-mutant T-ALL cells induced apoptosis (P = 0.005), a phenotype that was reversed by downstream Hedgehog pathway activation (P = 0.007). Transduction of most mutant PTCH1, SUFU, and GLI alleles into mammalian cells induced aberrant regulation of Hedgehog signaling, indicating that these mutations are pathogenic. Using a CRISPR/Cas9 system for lineage-restricted gene disruption in transgenic zebrafish, we found that ptch1 mutations accelerated the onset of notch1-induced T-ALL (P = 0.0001), and pharmacologic Hedgehog pathway inhibition had therapeutic activity. Thus, Hedgehog-activating mutations are driver oncogenic alterations in high-risk T-ALL, providing a molecular rationale for targeted therapy in this disease

    Zeta Inhibitory Peptide attenuates learning and memory by inducing NO-mediated downregulation of AMPA receptors

    Get PDF
    Zeta inhibitory peptide (ZIP), a PKMζ inhibitor, is widely used to interfere with the main- tenance of acquired memories. ZIP is able to erase memory even in the absence of PKMζ, via an unknown mechanism. We found that ZIP induces redistribution of the AMPARGluA1 in HEK293 cells and primary cortical neurons, and decreases AMPAR-mediated currents in the nucleus accumbens (NAc). These effects were mimicked by free arginine or by a modified ZIP in which all but the arginine residues were replaced by alanine. Redistribution was blocked by a peptidase-resistant version of ZIP and by treatment with the nitric oxide (NO)- synthase inhibitor L-NAME. ZIP increased GluA1-S831 phosphorylation and ZIP-induced redistribution was blocked by nitrosyl-mutant GluA1-C875S or serine-mutant GluA1-S831A. Introducing the cleavable arginine-alanine peptide into the NAc attenuated expression of cocaine-conditioned reward. Together, these results suggest that ZIP may act as an arginine donor, facilitating NO-dependent downregulation of AMPARs, thereby attenuating learning and memory

    Enucleation and development of cluster headache: a retrospective study

    Get PDF
    BACKGROUND: Cluster headache (CH) is a neurovascular, primary headache disorder. There are, however, several case reports about patients whose CH started shortly after a structural brain disease or trauma. Motivated by a patient who developed CH 3 weeks after the removal of an eye and by similar case reports, we tested the hypothesis that the removal of an eye is a risk factor for CH. METHODS: A detailed headache questionnaire was filled out by 112 patients on average 8 years after enucleation or evisceration of an eye. RESULTS: While 21 % of these patients experienced previously unknown headaches after the removal of an eye, no patient fulfilled the diagnostic criteria for CH. CONCLUSION: Our data does not suggest that the removal of an eye is a major risk factor for the development of CH
    corecore