614 research outputs found

    Significant Role of the Cardiopostural Interaction in Blood Pressure Regulation During Standing

    Get PDF
    Cardiovascular and postural control systems have been studied independently despite the increasing evidence showing the importance of cardio-postural interaction in blood pressure regulation. In this study, we aimed to assess the role of cardio-postural interaction in relation to cardiac baroreflex in blood pressure regulation under orthostatic stress before and after mild exercise. Physiological variables representing cardiovascular control (heart rate and systolic blood pressure), lower limb muscle activation (electromyography), and postural sway (center of pressure derived from force and moment data during sway) were measured from 17 healthy participants (25±2 years; 8 females) during a sit-to stand test before and after sub-maximal exercise. The cardio-postural control (characterized by baroreflex-mediated muscle-pump effect in response to blood pressure changes, i.e., muscle-pump baroreflex) was assessed using wavelet transform coherence and causality analyses in relation to the baroreflex control of heart rate. Significant cardio-postural blood pressure control was evident counting for almost half of the interaction time with blood pressure changes that observed in the cardiac baroreflex (36.6-72.5% pre-exercise and 34.7-53.9% post-exercise). Thus, cardio-postural input to blood pressure regulation should be considered when investigating orthostatic intolerance. A reduction of both cardiac and muscle-pump baroreflexes in blood pressure regulation was observed post-exercise and was likely due to the absence of excessive venous pooling and a less stressed system after mild exercise. With further studies using more effective protocols evoking venous pooling and muscle-pump activity, the cardio-postural interaction could improve our understanding of the autonomic control system and ultimately lead to a more accurate diagnosis of cardio-postural dysfunctions

    Development of high-throughput methods to screen disease caused by Rhizoctonia solani AG 2-1 in oilseed rape

    Get PDF
    Background: Rhizoctonia solani (Kühn) is a soil-borne, necrotrophic fungus causing damping off, root rot and stem canker in many cultivated plants worldwide. Oilseed rape (OSR, Brassica napus) is the primary host for anastomosis group (AG) 2-1 of R. solani causing pre- and post-emergence damping-off resulting in death of seedlings and impaired crop establishment. Presently, there are no known resistant OSR genotypes and the main methods for disease control are fungicide seed treatments and cultural practices. The identification of sources of resistance for crop breeding is essential for sustainable management of the disease. However, a high-throughput, reliable screening method for resistance traits is required. The aim of this work was to develop a low cost, rapid screening method for disease phenotyping and identification of resistance traits. Results: Four growth systems were developed and tested: (1) nutrient media plates, (2) compost trays, (3) light expanded clay aggregate (LECA) trays, and (4) a hydroponic pouch and wick system. Seedlings were inoculated with virulent AG 2-1 to cause damping-off disease and grown for a period of 4–10 days. Visual disease assessments were carried out or disease was estimated through image analysis using ImageJ. Conclusion: Inoculation of LECA was the most suitable method for phenotyping disease caused by R. solani AG 2-1 as it enabled the detection of differences in disease severity among OSR genotypes within a short time period whilst allowing measurements to be conducted on whole plants. This system is expected to facilitate identification of resistant germplasm

    On the complexity of resource-bounded logics

    Get PDF
    We revisit decidability results for resource-bounded logics and use decision problems for vector addition systems with states (VASS) to characterise the complexity of (decidable) model-checking problems. We show that the model-checking problem for the logic RB+-ATL is 2EXPTIME-complete by using recent results on alternating VASS. In addition, we establish that the model-checking problem for RBTL is decidable and has the same complexity as for RBTL* (the extension of RBTL with arbitrary path formulae), namely EXPSPACE-complete, proving a new decidability result as a by-product of the approach. Finally, we establish that the model-checking problem for RB+-ATL* is decidable by a reduction to parity games, and show how to synthesise values for resource parameters

    Unravelling the Therapeutic Potential of Nano-Delivered Functional Foods in Chronic Respiratory Diseases

    Full text link
    Chronic inflammation of the respiratory tract is one of the most concerning public health issues, as it can lead to chronic respiratory diseases (CRDs), some of which are more detrimental than others. Chronic respiratory diseases include chronic obstructive pulmonary disease (COPD), asthma, lung cancer, and pulmonary fibrosis. The conventional drug therapies for the management and treatment of CRDs only address the symptoms and fail to reverse or recover the chronic-inflammation-mediated structural and functional damage of the respiratory tract. In addition, the low efficacy and adverse effects of these drugs have directed the attention of researchers towards nutraceuticals in search of potential treatment strategies that can not only ameliorate CRD symptoms but also can repair and reverse inflammatory damage. Hence, there is a growing interest toward investigating the medicinal benefits of nutraceuticals, such as rutin, curcumin, zerumbone, and others. Nutraceuticals carry many nutritional and therapeutic properties, including anti-inflammatory, antioxidant, anticancer, antidiabetic, and anti-obesity properties, and usually do not have as many adverse effects, as they are naturally sourced. Recently, the use of nanoparticles has also been increasingly studied for the nano drug delivery of these nutraceuticals. The discrete size of nanoparticles holds great potential for the level of permeability that can be achieved when transporting these nutraceutical compounds. This review is aimed to provide an understanding of the use of nutraceuticals in combination with nanoparticles against CRDs and their mechanisms involved in slowing down or reversing the progression of CRDs by inhibiting pro-inflammatory signaling pathways.</jats:p

    Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.

    Get PDF
    The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition

    Activated Leukocyte Cell Adhesion Molecule Expression and Shedding in Thyroid Tumors

    Get PDF
    Activated leukocyte cell adhesion molecule (ALCAM, CD166) is expressed in various tissues, cancers, and cancer-initiating cells. Alterations in expression of ALCAM have been reported in several human tumors, and cell adhesion functions have been proposed to explain its association with cancer. Here we documented high levels of ALCAM expression in human thyroid tumors and cell lines. Through proteomic characterization of ALCAM expression in the human papillary thyroid carcinoma cell line TPC-1, we identified the presence of a full-length membrane-associated isoform in cell lysate and of soluble ALCAM isoforms in conditioned medium. This finding is consistent with proteolytically shed ALCAM ectodomains. Nonspecific agents, such as phorbol myristate acetate (PMA) or ionomycin, provoked increased ectodomain shedding. Epidermal growth factor receptor stimulation also enhanced ALCAM secretion through an ADAM17/TACE-dependent pathway. ADAM17/TACE was expressed in the TPC-1 cell line, and ADAM17/TACE silencing by specific small interfering RNAs reduced ALCAM shedding. In addition, the CGS27023A inhibitor of ADAM17/TACE function reduced ALCAM release in a dose-dependent manner and inhibited cell migration in a wound-healing assay. We also provide evidence for the existence of novel O-glycosylated forms and of a novel 60-kDa soluble form of ALCAM, which is particularly abundant following cell stimulation by PMA. ALCAM expression in papillary and medullary thyroid cancer specimens and in the surrounding non-tumoral component was studied by western blot and immunohistochemistry, with results demonstrating that tumor cells overexpress ALCAM. These findings strongly suggest the possibility that ALCAM may have an important role in thyroid tumor biology

    Pathway to a Human-Values Based Approach to Tackle Misinformation Online

    Get PDF
    Echoing what matters to us, our values pervade the criteria we apply in the judgment of the information we receive on social media when assigning to it a degree of relevance. In this era of “fake-news”, understanding how the values of a social group influence perception and intentions for sharing pieces of (mis)information can reveal critical aspects for socio-technical solutions to mitigate misinformation spreading. This particular study contrasts the reasoning of a group in the United Kingdom and another in Brazil when judging and valuating the same set of headlines. The results confirm the influence of dominant values in the group in the interpretation of the headlines and potential motivations for sharing them, pointing out directions to advance with the human values-based approach to fight misinformation

    In vitro anti-HIV activity of some Indian medicinal plant extracts

    Get PDF
    Background Human Immunodeficiency Virus (HIV) persists to be a significant public health issue worldwide. The current strategy for the treatment of HIV infection, Highly Active Antiretroviral Therapy (HAART), has reduced deaths from AIDS related disease, but it can be an expensive regime for the underdeveloped and developing countries where the supply of drugs is scarce and often not well tolerated, especially in persons undergoing long term treatment. The present therapy also has limitations of development of multidrug resistance, thus there is a need for the discovery of novel anti-HIV compounds from plants as a potential alternative in combating HIV disease. Methods Ten Indian medicinal plants were tested for entry and replication inhibition against laboratory adapted strains HIV-1IIIB, HIV-1Ada5 and primary isolates HIV-1UG070, HIV-1VB59 in TZM-bl cell lines and primary isolates HIV-1UG070, HIV-1VB59 in PM1 cell lines. The plant extracts were further evaluated for toxicity in HEC-1A epithelial cell lines by transwell epithelial model. Results The methanolic extracts of Achyranthes aspera, Rosa centifolia and aqueous extract of Ficus benghalensis inhibited laboratory adapted HIV-1 strains (IC80 3.6–118 μg/ml) and primary isolates (IC80 4.8–156 μg/ml) in TZM-bl cells. Methanolic extract of Strychnos potatorum, aqueous extract of Ficus infectoria and hydroalcoholic extract of Annona squamosa inhibited laboratory adapted HIV-1 strains (IC80 4.24–125 μg/ml) and primary isolates (IC80 18–156 μg/ml) in TZM-bl cells. Methanolic extracts of Achyranthes aspera and Rosa centifolia, (IC801-9 μg/ml) further significantly inhibited HIV-1 primary isolates in PM1cells. Methanolic extracts of Tridax procumbens, Mallotus philippinensis, Annona reticulate, aqueous extract of Ficus benghalensis and hydroalcoholic extract of Albizzia lebbeck did not exhibit anti-HIV activity in all the tested strains. Methanolic extract of Rosa centifolia also demonstrated to be non-toxic to HEC-1A epithelial cells and maintained epithelial integrity (at 500 μg/ml) when tested in transwell dual-chamber. Conclusion These active methanolic extracts of Achyranthes aspera and Rosa centifolia, could be further subjected to chemical analysis to investigate the active moiety responsible for the anti-HIV activity. Methanolic extract of Rosa centifolia was found to be well tolerated maintaining the epithelial integrity of HEC-1A cells in vitro and thus has potential for investigating it further as candidate microbicide
    • …
    corecore