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Abstract 

Cardiovascular and postural control systems have been studied independently despite the increasing 

evidence showing the importance of cardio-postural interaction in blood pressure regulation. In this study, 

we aimed to assess the role of cardio-postural interaction in relation to cardiac baroreflex in blood 

pressure regulation under orthostatic stress before and after mild exercise. Physiological variables 

representing cardiovascular control (heart rate and systolic blood pressure), lower limb muscle activation 

(electromyography), and postural sway (center of pressure derived from force and moment data during 

sway) were measured from 17 healthy participants (25±2 years; 8 females) during a sit-to-stand test 

before and after sub-maximal exercise. The cardio-postural control (characterized by baroreflex-mediated 

muscle-pump effect in response to blood pressure changes, i.e., muscle-pump baroreflex) was assessed 

using wavelet transform coherence and causality analyses in relation to the baroreflex control of heart rate. 

Significant cardio-postural blood pressure control was evident counting for almost half of the interaction 

time with blood pressure changes that observed in the cardiac baroreflex (36.6-72.5% pre-exercise and 

34.7-53.9% post-exercise). Thus, cardio-postural input to blood pressure regulation should be considered 

when investigating orthostatic intolerance. A reduction of both cardiac and muscle-pump baroreflexes in 

blood pressure regulation was observed post-exercise and was likely due to the absence of excessive 

venous pooling and a less stressed system after mild exercise. With further studies using more effective 

protocols evoking venous pooling and muscle-pump activity, the cardio-postural interaction could 

improve our understanding of the autonomic control system and ultimately lead to a more accurate 

diagnosis of cardio-postural dysfunctions. 

Keywords: cardio-postural control, skeletal muscle pump, orthostatic hypotension, mild exercise. 
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New & Noteworthy 

We examined the interaction between cardiovascular and postural control systems during standing before 

and after mild exercise. Significant cardio-postural input to blood pressure regulation was shown 

suggesting the importance of cardio-postural integration when investigating orthostatic hypotension. In 

addition, we observed a reduction of baroreflex-mediated blood pressure regulation after exercise.  
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Introduction 

Orthostatic hypotension frequently experienced in the elderly (38, 48) and in patients with 

neurodegenerative diseases (4, 56) is largely associated with autonomic dysfunction (15). Astronauts also 

suffer from orthostatic intolerance after spaceflight (6) due to a reduction in blood volume and 

impairment of cardiac function and heart rate responses (77). In addition, astronauts often experience 

post-flight gait and postural instabilities due to in-flight adaptive alterations to sensory-motor control (34). 

Upon standing, gravitational effects cause a downward displacement of thoracic blood volume to the 

regions below the diaphragm (65, 69). In addition, the central blood volume declines following a rise in 

fluid filtration into the interstitial spaces in the upright position (39). As a consequence, the venous return 

falls leading to a reduction in stroke volume, cardiac output, and arterial blood pressure, which if not 

compensated for, will result in systemic hypotension which could further lead to cerebral hypoperfusion 

and syncope (20, 64, 68). 

 Maintaining postural and cardiovascular stability in the upright posture involves complex 

physiological regulations among which the autonomic nervous system plays a central role (66). 

Orthostatic stress evokes a number of physiological responses including the arterial baroreflex elevating 

heart rate and peripheral vascular resistance (30, 59, 75) and skeletal muscle pump effect propelling the 

pooled blood back to the heart (18, 24, 45). 

Upon standing, decreased aortic and carotid blood pressure unload the baroreceptors located in the 

aortic arch and carotid sinuses resulting in a rapid increase of heart rate via vagal withdrawal and slower 

elevation of heart rate and peripheral vascular resistance through sympathetic activation to maintain 

arterial blood pressure (59). Nevertheless, the baroreflex-mediated sympathetic nerve activity has little 

effect on venous tone in the lower limbs due to scarce sympathetic innervation in the veins within limb 

muscles (16, 60). As a consequence, quiet standing results in extensive venous pooling in the legs in the 

absence of skeletal muscle pump effect. Contraction of muscles in the lower limbs pumps the pooled 

venous blood back to the heart and increases venous return and cardiac output (12, 21, 24, 41). It is well 

recognized that skeletal muscle pump plays a major role in blood pressure regulation under orthostatic 



5 

stress especially in patients with autonomic failure who have difficulties elevating vascular resistance (66). 

In addition, the slight postural sway during standing resulted from lower limb muscle activities also 

serves as an important contributor in promoting venous return (1, 29, 50). 

Although it has been long known that the skeletal muscle pump helps maintain blood pressure (21), 

the cardiovascular and postural reflexes have been primarily investigated as independent control 

mechanisms (13, 55, 81). Recent research has been conducted to focus on the control relationship 

between the musculoskeletal and cardiovascular systems. Novak et al. proposed a conceptual model of 

cardio-locomotor coupling during walking (52). In this model, the authors hypothesized that forces 

generated by muscle contraction during walking act as a pump, propelling venous blood to the right 

atrium with a step synchronized rhythm. Studies conducted by Claydon et al. (8, 9) showed the link 

between postural sway and prevention of syncope in which participants who had poor tilt table orthostatic 

tolerance but never fainted during normal standing showed greater postural sway than patients who 

experienced frequent syncopal episodes (9). These observations demonstrate the importance of the 

skeletal muscle pump effect in cardiovascular regulation under physiological conditions of insufficient 

vascular control. In addition to the mechanical effect of muscle pump on blood pressure, it is reasonable 

to hypothesize the existence of a feedback baroreflex-mediated muscle pump activation in response to 

blood pressure changes (i.e., muscle-pump baroreflex) which forms a closed control loop analogous to the 

well-known closed-loop model between heart rate and blood pressure. That is, the muscle-pump 

baroreflex responds to blood pressure changes via baroreceptors, like the arterial baroreflex, and activates 

skeletal muscle contractions through central neural pathways to compensate blood pressure perturbations. 

An integrative model shown in Fig. 1 has recently been proposed by our group describing the 

interactions between cardiovascular and postural control systems related to orthostatic tolerance through 

the skeletal muscle pump effect (2). In this model, the novel component is the muscle-pump baroreflex in 

response to blood pressure changes through a central cardio-postural integration. This muscle-pump 

baroreflex, combined with the well-known mechanical effect of the muscle pump on cardiovascular 

systems, forms a closed control loop between the cardiovascular and postural systems (cardio-postural 
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control). In addition, the blood pressure regulation through cardiac baroreflex control of heart rate and the 

limb muscle activation in response to the sensory perception of the foot during postural sway through 

somatosensory control system (i.e., postural control) are also integrated into the model. In the present 

study, the emphasis is on the newly proposed muscle-pump baroreflex mechanism.  

The cardio-postural integration was characterized based on a wavelet-based technique in our 

previous studies which showed evidence of significant coherent behavior between the two systems (17, 

18). However, the directionality of the information flow between the systems remains to be understood. 

Such information will aid in monitoring system performance under various physiological conditions. 

Decline or deviation in the strength of causality from well-established baseline values could be an 

indicator of system impairment. Causal interactions between cardiovascular and postural control systems 

were explored in our previous work (71–74). 

In this study, we investigated the role of cardio-postural control (the muscle-pump baroreflex in 

particular) in relation to cardiac baroreflex in blood pressure regulation under orthostatic stress. 

Participants were exposed to controlled external perturbation in the form of sub-maximal exercise and 

signals representing cardiovascular control (heart rate, HR and systolic blood pressure, SBP), lower limb 

muscle activation (electromyography, EMG), and postural sway (center of pressure, COP, derived from 

force and moment data during sway) were measured prior to and after exercise. Mild exercise has been 

reported to decrease blood pressure during post-exercise standing (31, 33, 40) as a consequence of 

excessive venous pooling induced by vasodilatation of the leg muscles (22). We hypothesized that: 1) the 

cardio-postural control plays a significant role in blood pressure regulation in response to orthostatic 

challenge and 2) the muscle-pump baroreflex mechanism will be further activated and have a greater 

contribution to blood pressure regulation after exercise. 

Materials and Methods 

Protocols 

Data were collected from 20 participants (age: 26±2 years; height: 173±8 cm; weight: 67±11 kg; 10 

females) with no history of cardiovascular, respiratory, or neurological disease, major musculoskeletal 
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injuries, or hormone imbalance. The use of prescription medications and naturopathic remedies were 

reported. Participants taking any substance that could alter cardiovascular regulation or postural stability 

were excluded. Prior to the experiments, participants’ height, weight, general medical history, and present 

medications were recorded. Female participants were asked to report the use of prescription 

contraceptives and were not tested during a particular phase of the menstrual cycle. All participants were 

instructed to refrain from exercise and caffeine consumption for 24 hours prior to the experiment. The 

experiment protocol was approved to be of minimal risk by Simon Fraser University’s Research Ethics 

Board complied with the Tri-Council policy on research ethics (TCPS 2). Written informed consent was 

obtained from each participant before the experiment. 

The experiment protocol consisted of three parts: pre-exercise sit-to-stand test, sub-maximal cycle 

ergometer exercise, and post-exercise stand test. All tests were conducted in a sensory-minimized 

environment – a dark room with black drapes in front of the participants with minimal ambient noise. 

During the sit-to-stand test, participants were seated quietly with arms relaxed by their sides for 5 minutes, 

after which assistance was provided to transition into upright stance on a force platform for an additional 

6 minutes to induce orthostatic stress. Participants’ feet were placed parallel and 5 cm apart on the center 

of the force platform. They were instructed to keep their eyes closed, maintain imaginary eye-level gaze, 

and not to alter foot placement.  

After the sit-to-stand test, participants were seated comfortably on a cycle ergometer to carry out a 

12-minute sub-maximal exercise protocol. The exercise protocol consisted of a 2-minute warm-up at 25W,

followed by 10 minutes at 80W or 100W for female and male participants, respectively. Participants were 

instructed to maintain 70 RPM throughout the duration of the exercise protocol. This protocol was 

designed to induce mild stress on the cardiovascular system without crossing the aerobic threshold and 

limited the risk of musculoskeletal fatigue. No data were collected during the exercise period. 

Immediately upon cessation of exercise, a 6-minute stand test was conducted with eyes closed 

(forward gaze), and identical pre-test foot placement on the force platform. Approximately 30 seconds 

elapsed in the transition from the cycle ergometer to the force platform and initiation of data acquisition. 
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Data Collection 

During the pre-exercise sit-to-stand test and post-exercise stand test, electrocardiography (ECG) 

was acquired with custom equipment from LifePak 8 (Medtronic Inc, MN, USA) in a standard Lead II 

electrode configuration. Continuous blood pressure was monitored through a non-invasive 

photoplethysmography finger cuff from Finometer Model 1 (FMS, Amsterdam, The Netherlands). 

Surface EMG signals were measured from four bilateral lower leg muscles of both legs: tibialis anterior, 

lateral soleus, and medial and lateral gastrocnemius. Transdermal differential recording of the signals was 

performed using the Bagnoli-8 (Delsys Inc, MA, USA) EMG system. The sites for surface EMG sensor 

placement were chosen based on recommendations from the SENIAM project (25). Postural sway data, in 

the form of COP coordinates (medial-lateral sway COPx and antero-posterior sway COPy), were derived 

from force and moment data obtained with an Accusway Plus force platform (AMTI, MA, USA). The 

exercise protocol was performed on a digital Jaeger ER 800 cycle ergometer (Wuerzburg, Germany). 

Data were acquired at a sampling rate of 1000 Hz through a National Instruments PCI-6229 16-bit data 

acquisition platform and Labview 8.2 software (National Instruments Inc, TX, USA). 

Data Analysis 

Data analyses were performed in MATLAB (MathWorks, MA, USA). The last five minutes of the 

quiet stance phase were used for analysis. QRS complex was first detected from ECG based on Pan-

Tompkins algorithm (54), which yielded the time series of heart beat period (i.e., RR-interval). Beat-by-

beat time series of SBP were then obtained from the maximum pressure values of the blood pressure 

waveform within each RR-interval while the diastolic blood pressure (DBP) time series were constructed 

by identifying the minimum blood pressure values prior to the SBP peak of the following beat. The beat-

by-beat mean arterial pressure (MAP) was then calculated by averaging the blood pressure waveform 

between two adjacent DBP valleys. 

Aggregate EMG was obtained by addition of rectified EMG signals from all individual leg muscles 

to represent the overall muscle activities (17, 18). The EMG envelope was then captured by a moving 

average filter whose cutoff frequency was recommended by the SENIAM project to be within 5-20 Hz 



9 

(25). Considering the low-frequency response of cardio-postural control (<0.5 Hz) (2, 5, 76), a cutoff 

frequency of 5 Hz was used for the filter in EMG envelope extraction to minimize the estimation 

uncertainty (25). Finally, analogous to the impulse of force, the area under the EMG envelope within each 

heart beat (i.e., EMG impulse, EMGimp) was calculated to represent the muscle contraction strength on a 

beat-by-beat basis. The concept of impulse was employed because, in a beat-by-beat perspective, the 

strength of muscle contraction over a heartbeat would be related to the time period of that beat. That is, a 

brief strong contraction can be considered to be equivalent to weaker contractions over a longer period 

and the same contraction level would produce higher overall strength over a longer heartbeat. The 

resultant COP (COPr) was obtained from COPx and COPy (i.e., COPr=√COPx2+COPy2) and the change 

rate of COPr (COPrv) was calculated as the first derivative of COPr and averaged within each beat. The 

resultant COPrv time series represent the beat-by-beat postural sway velocity (44, 82). All beat-by-beat 

time series were resampled to 10 Hz using spline interpolation prior to the wavelet transform and 

causality analysis. 

Wavelet transform coherence analysis 

The wavelet transform coherence (WTC) method was proposed and explained in detail by Torrence 

and Compo (70). Briefly, the Morlet wavelet was applied to obtain time-frequency distributions of WTC 

(17, 18) for the following signal pairs: SBP→RR (cardiac baroreflex), SBP→EMGimp (muscle-pump 

baroreflex), SBP→COPrv (baroreflex-mediated postural sway), and COPrv→EMGimp (postural control). 

For each pair of signals, the threshold of significant coherence was obtained from the WTC of 500 pairs 

of surrogate data as the 90th percentile of the coherence sampling distribution at each scale/frequency 

through the Monte Carlo method (19). The surrogate data were generated with a first order autoregressive 

model with coefficients estimated from the actual signals. Three frequency bands were considered to 

reflect the common range of possible responses to perturbations of both the cardiovascular and postural 

control systems (2, 5, 76): very low-frequency (VLF, 0.03 – 0.07 Hz), low-frequency (LF, 0.07 – 0.15 

Hz), and high-frequency (HF, 0.15 – 0.5 Hz).  
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The percentage of significant coherence (%SC) was computed as the area of significant WTC in 

each frequency band divided by the total area of that frequency band from the time-frequency distribution 

of WTC (18). The gain values (G) of each signal pair were computed from the cross wavelet transform of 

the two signals (19) and averaged over regions of significant WTC within each frequency band. 

Causality analysis 

The causality between the acquired signals was studied using the non-linear convergent cross 

mapping (CCM) method (35, 67). The efficacy of CCM method towards detecting causality between 

physiological signals and its superior performance over Granger causality with signals of non-linear 

nature have been demonstrated in the literature (26, 61, 62, 67, 74). To infer a causal relationship between 

two variables (X and Y), first, the state space reconstruction (shadow manifold) for both variables were 

performed. Next, the correspondence between the original variable and its estimate using the shadow 

manifold of the other variable was quantified using Pearson correlation coefficient (varying from 0 to 1) 

to assert the causal information flowing from one variable to another. The mathematical representation of 

causal relationship is presented in the Appendix and the detailed explanation of the CCM method is 

presented in the work done by Sugihara et al. (supplementary material) (67).  

The bidirectional causalities were investigated between the following signal pairs: SBP↔EMGimp 

(muscle-pump baroreflex vs. blood pressure regulation via mechanical muscle pump effect), 

COPrv↔EMGimp (posture control vs. muscle contraction induced postural sway) and SBP↔COPrv 

(baroreflex-mediated postural sway vs. blood pressure regulation via postural sway). For each signal pair, 

if there existed a significant difference in a population-wide mean causality values between the two causal 

directions (X→Y and Y→X), then one was considered to have a dominant causal behavior on another. 

This behavior was representative of a system being a regulator or regulated through other physiological 

processes (muscle pump driven, baroreflex driven, or postural sway driven). All CCM results presented in 

this paper were calculated using an embedding dimension (E) of 4, chosen based on false nearest 

neighbor’s algorithm (32) using CRP toolbox in MATLAB (43), at a delay (τ) of 10 samples to capture 

physiological alterations within a heartbeat range. 
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Spontaneous baroreflex sensitivity 

Spontaneous baroreflex sensitivity (BRS) was estimated to characterize the autonomic regulation of 

HR in response to blood pressure changes using the beat sequence method (27, 55). Briefly, beat-by-beat 

SBP and RR interval sequences were selected when the SBP and RR interval increased or decreased in 

the same direction for three or more beats and the absolute change in SBP between beats was greater than 

0.5 mmHg. Regression slopes (ΔRR/ΔSBP) were calculated for each selected beat sequence and averaged 

over the entire 5-minute data to obtain the overall BRS. 

The time scale used in BRS calculation (i.e., ≥ 3 heart beats) implies that the frequency information 

carried in BRS is mostly in accordance with the HF band in WTC analysis (0.15–0.5 Hz). As a 

conventional indicator of cardiac baroreflex regulation, BRS, therefore, provides reference values for the 

WTC-derived SBP→RR gain values in HF band. The correlation of the two techniques was evaluated by 

linear regression and Bland-Altman method (3) using the pooled BRS estimates and SBP→RR gain 

values in HF band from all participants pre- and post-exercise. 

Statistics 

Statistical analyses were performed with JMP 12 software (SAS Institute Inc., NC, USA). A two-

factor (pre/post exercise and male/female) ANOVA with repeated measures on one factor (pre/post 

exercise) was used followed by Tukey HSD post hoc test. Residual of the ANOVA model was tested for 

normality using Shapiro–Wilk test. Data failed the test of normality were analyzed using nonparametric 

Friedman's test instead. Significance was accepted at p<0.05, but given the limited number of participants, 

p<0.1 is reported to reveal possible trends. The results are presented as mean ± standard deviation. 

Results 

The collected data were carefully reviewed and data from three participants were excluded due to 

the low signal quality of the continuous blood pressure measurements. As a consequence, data from 17 

participants (8 females; age: 25±2 years (male 26±2 years, female 25±3 years, p=0.36); height: 174±9 cm 

(male 180±4 cm, female 168±7 cm, p<0.001); weight: 69±11 kg (male 77±9 kg, female 61±4 kg, 

p<0.001)) were used in the analysis.  
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Cardiovascular and Postural Variables (Table 1) 

HR increased (p=0.002) and SBP decreased (p=0.049) after exercise while DBP and MAP 

remained unchanged (p=0.42 and 0.17 respectively). EMG and EMGimp were reduced post-exercise 

(p=0.009 and 0.004 respectively). Male participants tended to have greater COPr (i.e., larger postural 

sway) than females (p=0.09). No significant interaction effects (exercise × gender) were found in mean 

values. 

Cardio-Postural Coupling and Spontaneous Baroreflex Sensitivity (Table 2) 

The averaged percentage time of cardio-postural coupling (SBP→EMGimp, muscle-pump baroreflex) 

before and after exercise were 21.1% and 18.8% (p=0.52) in HF band, 35.8% and 31.4% (p=0.61) in LF 

band, and 25.3% and 15.6% (p=0.04) in VLF band. The %SC values for the cardiac baroreflex 

(SBP→RR) before and after exercise were 56.8% and 54.2% (p=0.38) in HF band, 76.3% and 79.6% 

(p=0.40) in LF band, and 46.5% and 31.6% (p=0.006) in VLF band. The linear coupling (%SC) between 

SBP and EMGimp was reduced after exercise in VLF band and the SBP→EMGimp gain values (i.e., the 

muscle-pump baroreflex sensitivity) decreased across all three frequency bands. The interaction between 

SBP and RR showed a similar pattern with a reduction of %SC in VLF band and decreased SBP→RR 

gain values in all frequency bands. In VLF band, the reduction of SBP→RR gain values was only found 

in females. The %SC and gain values from SBP to COPrv were not altered by mild exercise but gender 

difference (male > female) in %SC was observed at LF. Neither exercise nor gender had effects on %SC 

or gain values from COPrv to EMGimp. 

The spontaneous BRS derived from beat sequence method declined post-exercise which is in 

accordance with the WTC results. Linear regression between BRS estimates and SBP→RR gain values in 

HF band showed a correlation coefficient r of 0.96 and regression slope of 1.07 (p<0.0001) and the 

Bland-Altman plot indicated that the differences between the two methods are within the 95% limits of 

agreement except for one data point, showing a close agreement between the two methods with a 

systemic bias of 1.8 ms/mmHg (Fig. 3). The two data points with the largest BRS values in Figure 3 were 

from the same participant with low HR (49 bpm pre-exercise and 56 bpm post-exercise). This observation 
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is consistent with the positive correlation between RR interval and BRS reported previously, suggesting a 

higher level of parasympathetic activity in the participant (27). Therefore, in a physiological sense, the 

two data points were treated as normal rather than outliers and included in the analysis.  

Causality (Table 3) 

Bidirectional causality between SBP and RR (SBP↔RR) was not affected by either exercise or 

gender. In terms of cardio-postural control, the causality results revealed significantly stronger causal 

driving control from EMGimp→SBP, COPrv→SBP, and COPrv→EMGimp compared to causality values in 

reverse directions (p<0.05). This dominant control pattern remained unchanged after exercise with a 

further reduction of non-dominant causality of SBP→EMGimp, SBP→COPrv, and EMGimp→COPrv along 

with decreased COPrv→EMGimp causality.  

Discussion 

Significant Cardio-Postural Control of Blood Pressure  

Orthostatic intolerance involves factors that modify either cardiac output or peripheral vascular 

resistance leading to an inability to maintain arterial blood pressure. Extensive research has focused on 

the interaction of these cardiovascular control factors in relation to orthostatic regulation. However, 

during prolonged standing, reduced venous return decreases central blood volume and cardiac output 

whereas baroreflex-mediated vasoconstriction and elevation of HR become only partially effective in 

maintaining blood pressure. Decreased intramuscular pressure (i.e., the muscle tonus which maintains the 

pressure within the tissues and capillaries) was shown to be associated with orthostatic intolerance in 

otherwise healthy subjects during head-up tilt while the vasomotor and sympathetic tone of the fainters 

were intensely activated during the period preceding syncope (46). Mayerson and Burch also observed 

that the signs of syncope were eliminated by muscular contraction of lower limbs (46) indicating the 

importance of skeletal muscle pump effect in the prevention of orthostatic hypotension and syncope in 

addition to arterial baroreflex.  

The major finding of this study is the presence of significant cardio-postural control of blood 

pressure in response to orthostatic challenge. The bidirectional cardio-postural interaction (SBP↔EMGimp) 
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revealed by the causality analysis indicates significant feedback baroreflex-mediated muscle pump 

activity upon changes in blood pressure other than the well-known feedforward mechanical muscle pump 

effect. In terms of the percentage time of interaction with blood pressure changes, the contribution of 

muscle-pump baroreflex to blood pressure regulation was almost half of that contributed by the cardiac 

baroreflex (36.6-72.5% pre-exercise and 34.7-53.9% post-exercise). This indicates an important cardio-

postural component in blood pressure regulation under orthostatic stress in addition to the cardiac 

baroreflex. Our results revealed strong evidence that integrative cardio-postural control should be 

regularly considered as an important factor in research investigating orthostatic intolerance as well as 

corresponding countermeasures and prevention strategies.  

Reduction of Baroreflex-Mediated Orthostatic Regulation after Mild Exercise 

Decreased arterial blood pressure after exercise has been reported and studied (31, 33, 40). The 

post-exercise hypotension is considered to be the result of combined effects of centrally mediated 

reduction of sympathetic nerve activity (7, 23), blunted signal transduction from sympathetic outflow into 

vasoconstriction (22, 23), and local vasodilation mechanisms (37, 47). We, therefore, hypothesized that 

post-exercise vasodilation would cause excessive venous pooling leading to a greater involvement of the 

muscle pump regulatory mechanism in blood pressure control after exercise. 

The results showed that the cardiac baroreflex was blunted post-exercise which could result from a 

reduction of neural transduction of the baroreflex and the corresponding effects on baroreflex hysteresis 

(80). While a significant reduction in SBP was observed after exercise (106±9.7 mmHg pre-exercise vs. 

103±9.4 mmHg post-exercise, p=0.049), post-exercise hypotension and vasodilation were not evident in 

the present study inferred from unaltered MAP and DBP (an indicator of peripheral vascular resistance). 

In addition, decreased post-exercise EMG activity (50.0±27.1 µV pre-exercise vs. 39.0±24.4 µV post-

exercise, p=0.009) showed even less activation of the muscle pump suggesting a resetting of the muscle-

pump baroreflex after exercise. Therefore, the reduced muscle-pump baroreflex after exercise 

(%SCSBP→EMGimp and GSBP→EMGimp in Table 2), which contradicts our hypothesis, could result from the 

resetting of muscle-pump activity level and the absence of excessive venous pooling post-exercise likely 
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due to the mild intensity and short duration (12 minutes) of exercise in our protocol. The decline of both 

cardiac and muscle-pump baroreflexes indicates an overall reduction of baroreflex-mediated orthostatic 

regulation after mild exercise (Fig. 2). This reduction could also be attributed to the involvement of other 

local regulatory mechanisms after exercise such as thermoreflex via cutaneous circulation (79).  

The results showed weaker (p<0.05) baseline causal relationship in the direction of baroreflex 

control (SBP→EMGimp and SBP→COPrv) compared to that in the non-baroreflex direction 

(EMGimp→SBP and COPrv→SBP). After exercise, the strength of causality in baroreflex control direction 

was further reduced (Fig. 2), which suggests a decoupling in baroreflex-mediated cardio-postural 

interaction. This is consistent with the aforementioned post-exercise reduction of the muscle-pump 

baroreflex. Despite the post-exercise reduction of causality strength of muscle-pump baroreflex control, 

the non-baroreflex causal control was unchanged and the blood pressure was well regulated after exercise. 

Other than the possible involvement of alternative regulatory mechanisms, we speculated that the 

resetting of muscle-pump baroreflex may lead the system to a more efficient or, in other words, less 

stressed set point where less baroreflex control of muscle pump activation is required to maintain the 

blood pressure. The CCM causality in COPrv→EMGimp and EMGimp→COPrv declined after exercise with 

the dominant causal direction (COPrv→EMGimp) remaining unchanged, indicating a systemic 

disassociation of the postural control loop. This could be due to increased contribution to postural sway 

from sources other than muscle contractions (e.g., respiration (28, 63, 82) and hemodynamics (10, 51)) 

after exercise.  

Gender Effect on Cardio-Postural Control 

The cardiac baroreflex sensitivity (i.e., GSBP→RR) at VLF decreased post-exercise only in females. 

The distribution of blood volume is known to be different between male and female in that women have 

greater blood pooling in the splanchnic vascular bed (78) which redistributes blood volume to thoracic 

compartment during central hypovolemia (1). Therefore, women tend to rely more on slower 

sympathetic-induced vasoconstriction of the splanchnic vasculature for orthostatic regulation. The 
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reduced baroreflex control of HR in females may imply greater contribution of splanchnic 

vasoconstriction in blood pressure regulation after exercise. 

Our results revealed gender effects on COPr and cardio-postural control in relation to COPrv. 

Specifically, male participants presented marginally greater COPr than females (p=0.09; Table 1), which 

likely contributed to the gender differences (male > female) in %SCSBP→COPrv in LF band and GSBP→COPrv 

in HF band (Table 2). While the origin of larger sway in male participants in this study requires further 

postural investigation, it is important to take into account the gender effect when assessing the feasibility 

to use COP measurement as a surrogate of EMG in cardio-postural control analysis. 

Study Limitation and Future Work 

The present study employed a 12-minute mild exercise protocol as an external perturbation to 

enhance activation of the muscle-pump baroreflex. However, based on the results, it is possible that short-

duration mild exercise was insufficient to evoke excessive venous pooling in the legs during post-exercise 

standing in a healthy, young population. While the current study protocol was able to reveal the existence 

of significant cardio-postural control in blood pressure regulation, exercise protocols with higher intensity 

and/or longer duration or protocols specifically designed to increase venous pooling (e.g., passive head-up 

tilt with inactive muscle pump) may show a greater contribution of muscle-pump baroreflex on orthostatic 

regulation during post-perturbation standing as we hypothesized. 

Results of the current study were obtained from 17 healthy, young participants. In terms of the 

scope of the study to assess the cardio-postural interaction and the effect of mild exercise, only healthy 

and young participants were included to minimize the confounding effects of age and diseases. However, 

future investigations on participants of different ages and health conditions (e.g., stroke, concussion, 

neurodegenerative diseases, and bed rest immobilization) are necessary to evaluate the clinical 

significance of the cardio-postural model. While the sample size of 17 is reasonable for a controlled 

experimental exercise study (37, 47, 79, 80), a statistical power analysis should be considered to 

determine the sample size in the design of future studies.   
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While our results revealed significant role of the muscle-pump baroreflex in blood pressure 

regulation, the underlying neural pathways of muscle-pump baroreflex remain unclear and further 

investigations are warranted. The vestibular system has been shown to have interactions with both 

postural (11, 14) and cardiovascular (49, 57, 58) control systems. To understand the neural pathways of 

muscle-pump baroreflex, it would be beneficial to incorporate the vestibular system (through, for example, 

galvanic vestibular stimulation) in future studies. 

Additional factors that may affect the blood pressure regulation such as respiration, temperature, 

and hormone were not included in the current study to achieve a simplified cardio-postural model. These 

components will be gradually integrated into the model and the corresponding measurements will be 

collected in future studies. With increasing number of variables involved in the model, the bivariate 

methods used in the study (i.e., WTC and causality analysis) may become insufficient in revealing 

complex interactions among them and techniques capable of handling more variables (e.g., autoregressive 

moving average model) should be considered. 

The blood volume and vascular resistance in lower limbs were not measured in this study. As a 

result, the baroreflex control on vascular tone was not studied and information regarding venous pooling 

and lower limb vascular resistance was inferred from an indirect indicator, DBP. Near infra-red 

spectroscopy should be considered to quantitatively assess and monitor changes in vascular resistance and 

venous pooling in the calf.  

Conclusions 

The present study investigated the interactions between cardiovascular and postural control systems 

in healthy, young participants during quiet standing before and after mild exercise. The contributions of 

both cardiac and muscle-pump baroreflexes to blood pressure regulation, the bidirectional causality of 

cardio-postural control, as well as the effects of mild exercise on these control mechanisms were studied. 

Our results revealed a significant component of cardio-postural control in relation to the cardiac 

baroreflex in blood pressure regulation under orthostatic stress. After mild cycling exercise, a reduction of 

baroreflex-mediated orthostatic regulation of blood pressure was observed in terms of the degree of 
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interaction and causality strength. Although study protocols allowing further increase of venous pooling 

and hence muscle pump activity along with further neurological investigations are warranted to improve 

the understanding of cardio-postural integration, the current study has clearly revealed the important role 

of cardio-postural control in the orthostatic regulation of blood pressure. 

The blood pressure regulation and postural control can be affected by multiple factors including 

neurodegenerative diseases, aging, and exposure to microgravity. While disorders of cardiovascular and 

postural control systems are largely diagnosed and treated separately, the existence of significant 

interactions between the two systems suggests a preferable integrative assessment of cardio-postural 

systems. For example, postural instability has been shown to be closely related to cognitive function in 

patients with neurodegenerative diseases (36, 42) and can be identified at the early stage of the diseases 

(36, 53). The proposed cardio-postural model, therefore, could shed more insight on the central nervous 

control system and potentially lead to a more accurate diagnosis of cardiovascular and postural 

dysfunctions.  

Appendix 

Mathematical Representation of Causal Relationship 

Mathematically, the unidirectional causal information flowing from variable X to variable Y (X→Y) 

can be quantified using the CCM method as: 

X → Y = |ρ(X, X̂|MY)| and Y → X = 0.

Similarly, the unidirectional causal information flowing from Y to X (Y→X) can be quantified as: 

Y → X = |ρ(Y, Ŷ|MX)| and X → Y = 0.

In the case of bidirectional causality, the dominant causal interaction can be determined by 

calculating the difference of two causal events, for example, if there is a dominant causal information 

flowing from X to Y, then: 

X → Y − Y → X > 0 otherwise, it would be negative. 
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Figure Captions 

Figure 1. Illustration of the cardio-postural model associated with blood pressure regulation under 

orthostatic challenge. The cardio-postural integration is hypothesized as baroreflex-mediated skeletal 

muscle pump activity in response to blood pressure changes (muscle-pump baroreflex). The model also 

includes the cardiac baroreflex control of heart rate and the limb muscle activation in response to sensory 

perception of the foot during postural sway through somatosensory control system (i.e., postural control).  

Figure 2. Graphic summary of the results for cardiac baroreflex sensitivity, cardio-postural coupling, and 

bidirectional causality during standing before and after mild exercise (n=17, 8 females). A reduction of 

both cardiac and muscle-pump baroreflex controls of blood pressure was observed. 

%SC: percentage of significant coherence; G: gain value; Ca: causality strength; RR: RR-interval; SBP: 

systolic blood pressure; EMGimp: electromyography impulse on a beat-by-beat basis; COPrv: change rate 

of resultant center of pressure. 

N.C.: not changed after exercise; ↓: decreased after exercise.

*: only in females at VLF; †: gender effect (male > female) at LF; ‡: gender effect (male > female). 

Figure 3. Linear regression (left) and Bland-Altman plot (right) between cardiac baroreflex sensitivity 

(BRS) estimated from the beat sequence method and SBP→RR gain values (GSBP→RR) in high frequency 

(HF) band from the wavelet transform coherence (WTC) analysis using the pooled data points from all 

participants before and after mild exercise. The correlation coefficient of 0.96 and regression slope of 

1.07 (p<0.0001) obtained from linear regression indicated a close agreement between the two methods. 

Bland-Altman plot also showed that the differences between the two methods are within the 95% limits of 

agreement except for one outlier. 

G: gain value; BRS: baroreflex sensitivity; r: correlation coefficient; SD: standard deviation; RR: RR-

interval; SBP: systolic blood pressure. 
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Tables 

Table 1. Averaged cardiovascular and postural variables during standing before and after mild exercise 

(n=17, 8 females). After exercise, heart rate increased while systolic blood pressure and lower limb 

muscle activity showed reduction. Values are means ± SD. 

Exercise Gender 

Pre- Post- Male Female 

HR (bpm) 77.1±10.2 88.5±15.4* 79.6±7.0 86.3±18.9 

SBP (mmHg) 106±9.7 103±9.4* 104±9.9 105±9.5 

DBP (mmHg) 66.7±5.4 65.9±6.5 67.1±6.4 65.3±5.4 

MAP (mmHg) 82±6.6 80±6.9 80±6.6 81±7.0 

EMG (µV) 50.0±27.1 39.0±24.4* 50.8±34.4 37.4±7.3 

EMGimp (µV·s) 40.3±24.3 27.8±19.2* 39.4±28.7 28.0±10.1 

COPr (mm) 32.3±13.6 33.5±11.9 37.5±13.1 27.7±10.0‡ 

COPrv (mm/s) 9.3±5.3 8.2±3.8 11.0±5.2 6.3±1.6 

HR: heart rate; SBP: systolic blood pressure; DBP: diastolic blood pressure; MAP: mean arterial pressure; 

EMG: electromyography; EMGimp: EMG impulse on a beat-by-beat basis; COPr: resultant center of 

pressure; COPrv: change rate of COPr. 

*: Different from pre-exercise, p<0.05;  

‡: Different from male, p<0.1. 
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Table 2. Spontaneous baroreflex sensitivity and cardio-postural coupling during standing before and after 

mild exercise (n=17, 8 females). A significant cardio-postural control of blood pressure and a post-

exercise reduction of baroreflex-mediated orthostatic regulation were observed. Values are means ± SD. 

Exercise Gender 

Pre- Post- Male Female 

BRS (ms/mmHg) 12.7±12.6 8.2±7.1* 9.6±3.8 11.3±14.7 

%SCSBP→RR (%) 

HF 56.8±14.5 54.2±14.5 57.6±13.7 53.1±15.2 

LF 76.3±18.3 79.6±19.2 81.0±16.5 74.5±20.6 

VLF 46.5±21.5 31.6±17.2* 37.7±17.6 40.5±24.1 

GSBP→RR (ms/mmHg) 

HF 14.2±11.8 10.2±11.2* 11.5±4.5 13.0±16.4 

LF 13.7±8.2 9.4±4.3* 11.9±3.8 11.1±9.3 

VLF 
11.0±4.5 

(11.4±4.4) 

8.2±4.0† 

(6.5±3.4) 
10.2±4.3 8.9±4.6 

%SCSBP→EMGimp (%) 

HF 21.1±12.0 18.8±11.8 19.7±12.9 20.2±10.7 

LF 35.8±21.0 31.4±19.5 33.0±17.3 34.3±23.4 

VLF 25.3±13.3 15.6±10.7* 22.3±10.5 18.5±15.2 

GSBP→EMGimp (µV·s/mmHg) 

HF 1.76±1.06 1.11±0.84* 1.68±1.06 1.16±0.88 

LF 0.98±0.62 0.58±0.35* 0.86±0.41 0.69±0.65 

VLF 0.86±0.49 0.62±0.40* 0.88±0.53 0.58±0.31 

%SCSBP→COPrv (%) 

HF 9.9±3.8 11.6±3.1 11.6±3.4 9.8±3.6 

LF 11.4±7.3 11.1±5.6 14.1±5.4 8.1±6.1‡ 

VLF 13.6±11.7 11.1±8.6 13.8±10.6 10.8±9.8 

GSBP→COPrv (mm/mmHg·s) 

HF 3.01±3.04 2.04±1.74 3.64±3.00 1.27±0.52§ 

LF 1.33±1.15 0.98±0.48 1.50±1.06 0.76±0.36 

VLF 0.98±0.85 1.15±0.87 1.34±1.00 0.69±0.40 

%SCCOPrv→EMGimp (%) 

HF 16.1±7.2 17.9±7.4 18.3±8.6 15.4±5.2 

LF 17.1±8.3 15.6±12.1 18.0±9.3 14.4±11.2 

VLF 14.8±12.7 17.4±17.8 17.3±14.0 14.7±17.0 

GCOPrv→EMGimp (µV·s2/mm)

HF 1.20±0.66 0.92±0.67 0.87±0.45 1.27±0.82 

LF 1.64±1.52 1.21±1.09 1.07±0.64 1.83±1.74 

VLF 1.74±1.68 0.85±0.56 1.08±0.77 1.52±1.74 

BRS: baroreflex sensitivity; %SC: percentage of significant coherence; G: gain value; RR: RR-interval; 

SBP: systolic blood pressure; EMGimp: electromyography impulse on a beat-by-beat basis; COPrv: change 

rate of resultant center of pressure. 

*: Different from pre-exercise, p<0.05;  

†: Different from pre-exercise (female only), p<0.05 (see Italic text for values calculated from female 

participants only); 

‡: Different from male, p<0.05;  

§: Different from male, p<0.1.
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Table 3. Bidirectional strength of causality during standing before and after mild exercise (n=17, 8 

females). A post-exercise reduction of non-dominant causality (SBP→EMGimp, SBP→COPrv, and EMGimp

→COPrv) was observed. Values are means ± SD.

Causal Direction 

Exercise Gender 

Pre- Post- Male Female 

SBP→RR 0.93±0.04 0.95±0.04 0.94±0.04 0.94±0.04 

RR→SBP 0.93±0.03 0.94±0.03 0.94±0.03 0.93±0.04 

SBP→EMGimp 0.88±0.05 0.82±0.09* 0.86±0.07 0.83±0.09 

EMGimp→SBP 0.92±0.04 0.91±0.04 0.92±0.03 0.91±0.04 

SBP→COPrv 0.78±0.04 0.73±0.10* 0.78±0.05 0.72±0.09 

COPrv→SBP 0.91±0.04 0.90±0.05 0.91±0.04 0.89±0.05 

COPrv→EMGimp 0.87±0.06 0.81±0.10* 0.87±0.07 0.81±0.09‡ 

EMGimp→COPrv 0.81±0.05 0.73±0.12* 0.81±0.06 0.72±0.11† 

RR: RR-interval; SBP: systolic blood pressure; EMGimp: electromyography impulse on a beat-by-beat 

basis; COPrv: change rate of resultant center of pressure. 

*: Different from pre-exercise, p<0.05;  

†: Different from male, p<0.05; 

‡: Different from male, p<0.1. 
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