102 research outputs found

    Fitting model of ABR age dependency in a clinical population of normal hearing children

    Get PDF
    The purpose of this study was to present a simple and powerful fitting model that describes age-dependent changes of auditory brainstem responses (ABR) in a clinical population of normal hearing children. A total of 175 children (younger than 200 weeks postconceptional age) were referred for audiologic assessment with normal ABR results. ABR parameters of normal hearing children between 2003 and 2008 were included. The results of the right ears recorded at 90 dB nHL were analyzed. A simple and accurate fitting model was formulated based on these data. A very similar age-dependent effect was found for peaks III and V, and I–III and I–V intervals; latencies decrease as postconceptional age increases. It shows that the total age-dependent effect will be completed after 1.5–2 years. The age-dependent effect can be modeled by a relatively simple and accurate exponential function. This fitting model can be easily implemented to analyze ABR results of infants in daily clinical practice. We speculate about the underlying physiological processes

    Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology.

    Get PDF
    Trypanosoma cruzi, the flagellate protozoan agent of Chagas disease or American trypanosomiasis, is unable to synthesize sialic acids de novo. Mucins and trans-sialidase (TS) are substrate and enzyme, respectively, of the glycobiological system that scavenges sialic acid from the host in a crucial interplay for T. cruzi life cycle. The acquisition of the sialyl residue allows the parasite to avoid lysis by serum factors and to interact with the host cell. A major drawback to studying the sialylation kinetics and turnover of the trypomastigote glycoconjugates is the difficulty to identify and follow the recently acquired sialyl residues. To tackle this issue, we followed an unnatural sugar approach as bioorthogonal chemical reporters, where the use of azidosialyl residues allowed identifying the acquired sugar. Advanced microscopy techniques, together with biochemical methods, were used to study the trypomastigote membrane from its glycobiological perspective. Main sialyl acceptors were identified as mucins by biochemical procedures and protein markers. Together with determining their shedding and turnover rates, we also report that several membrane proteins, including TS and its substrates, both glycosylphosphatidylinositol-anchored proteins, are separately distributed on parasite surface and contained in different and highly stable membrane microdomains. Notably, labeling for α(1,3)Galactosyl residues only partially colocalize with sialylated mucins, indicating that two species of glycosylated mucins do exist, which are segregated at the parasite surface. Moreover, sialylated mucins were included in lipid-raft-domains, whereas TS molecules are not. The location of the surface-anchored TS resulted too far off as to be capable to sialylate mucins, a role played by the shed TS instead. Phosphatidylinositol-phospholipase-C activity is actually not present in trypomastigotes. Therefore, shedding of TS occurs via microvesicles instead of as a fully soluble form

    Effects of neuropeptide Y, insulin, 2-deoxyglucose, and food deprivation on food-motivated behavior

    Full text link
    The current study demonstrates the ability of neuropeptide Y (NPY) to increase break points under a progressive ratio 1 (PR1) reinforcement schedule. An initial response resulted in delivery of a food reinforcer (45 mg pellet) under the PR1, and an additional response was required for each successive reinforcer. The break point, the number of responses emitted to obtain the last reinforcer, is considered a measure of reinforcing efficacy or motivational strength of the food reinforcer. NPY (0.3–10 µg) significantly increased break point to levels comparable to those produced by 36–48 h of food deprivation. Although insulin (3–8 U/kg) and 2-deoxyglucose (150–250 mg/kg) also increased food intake, neither increased break points to levels produced by NPY or food deprivation. These data suggest that NPY may change the value of food in ways that cannot be accounted for by changes in insulin, glucose levels or intracellular glucoprivation. These results emphasize that simply measuring the amount of freely available food eaten is not a fully adequate measure of the strength of the feeding behavior.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46350/1/213_2006_Article_BF02311173.pd

    Policy challenges for the pediatric rheumatology workforce: Part I. Education and economics

    Get PDF
    For children with rheumatic conditions, the available pediatric rheumatology workforce mitigates their access to care. While the subspecialty experiences steady growth, a critical workforce shortage constrains access. This three-part review proposes both national and international interim policy solutions for the multiple causes of the existing unacceptable shortfall. Part I explores the impact of current educational deficits and economic obstacles which constrain appropriate access to care. Proposed policy solutions follow each identified barrier

    Policy challenges for the pediatric rheumatology workforce: Part II. Health care system delivery and workforce supply

    Get PDF
    The United States pediatric population with chronic health conditions is expanding. Currently, this demographic comprises 12-18% of the American child and youth population. Affected children often receive fragmented, uncoordinated care. Overall, the American health care delivery system produces modest outcomes for this population. Poor, uninsured and minority children may be at increased risk for inferior coordination of services. Further, the United States health care delivery system is primarily organized for the diagnosis and treatment of acute conditions. For pediatric patients with chronic health conditions, the typical acute problem-oriented visit actually serves as a barrier to care. The biomedical model of patient education prevails, characterized by unilateral transfer of medical information. However, the evidence basis for improvement in disease outcomes supports the use of the chronic care model, initially proposed by Dr. Edward Wagner. Six inter-related elements distinguish the success of the chronic care model, which include self-management support and care coordination by a prepared, proactive team

    The Upper and Lower Visual Field of Man: Electrophysiological and Functional Differences

    Get PDF

    Discriminative stimulus effects of a centrally administered, delta-opioid peptide (d-Pen2-d-Pen5-enkephalin) in pigeons

    Full text link
     The present study assessed the discriminative stimulus effects of the delta-opioid agonist [ d -Pen 2 - d -Pen 5 ]enkephalin (DPDPE) in pigeons. Food-restricted pigeons were trained to discriminate between ICV injections of 100 μg [ d -Pen 2 - d -Pen 5 ]enkephalin (DPDPE) and saline in a two-key operant procedure; acquisition of discriminative control was rapid (14–28 daily sessions). [ d -Ser 2 , Leu 5 , Thr 6 ]enkephalin (DSLET) and [ d -Ala 2 ]deltorphin II, peptides selective for delta-opioid receptors, produced discriminative stimulus effects similar to DPDPE, and were approximately equipotent to DPDPE. The non-peptidic, delta-opioid agonist BW373U86 (0.032–100 mg/kg, IM) partially generalized to DPDPE. The kappa-opioid agonist U69,593 (0.01–1 mg/kg, IM), and the mu-opioid agonists, DAMGO (0.1–3.2 μg, ICV) and morphine (1–10 mg/kg, IM), did not produce discriminative stimulus effects similar to DPDPE, up to doses that markedly decreased response rates. Naltrindole (0.1 mg/kg, IM), an antagonist selective for delta-opioid receptors, produced approximately a 30-fold reduction in the potency of DPDPE. DPDPE’s discriminative stimulus effect in pigeons appears to be mediated through a delta-opioid receptor; this effect may provide a procedure for assessing delta-opioid receptor function in vivo.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41956/1/213-127-3-225_61270225.pd
    corecore