87 research outputs found

    Negative regulation of syntaxin4/SNAP-23/VAMP2-mediated membrane fusion by Munc18c <i>In Vitro</i>

    Get PDF
    Background: Translocation of the facilitative glucose transporter GLUT4 from an intracellular store to the plasma membrane is responsible for the increased rate of glucose transport into fat and muscle cells in response to insulin. This represents a specialised form of regulated membrane trafficking. Intracellular membrane traffic is subject to multiple levels of regulation by conserved families of proteins in all eukaryotic cells. Notably, all intracellular fusion events require SNARE proteins and Sec1p/Munc18 family members. Fusion of GLUT4-containing vesicles with the plasma membrane of insulin-sensitive cells involves the SM protein Munc18c, and is regulated by the formation of syntaxin 4/SNAP23/VAMP2 SNARE complexes. Methodology/Principal Findings Here we have used biochemical approaches to characterise the interaction(s) of Munc18c with its cognate SNARE proteins and to examine the role of Munc18c in regulating liposome fusion catalysed by syntaxin 4/SNAP23/VAMP2 SNARE complex formation. We demonstrate that Munc18c makes contacts with both t- and v-SNARE proteins of this complex, and directly inhibits bilayer fusion mediated by the syntaxin 4/SNAP23/VAMP2 SNARE complex. Conclusion/Significance Our reductionist approach has enabled us to ascertain a direct inhibitory role for Munc18c in regulating membrane fusion mediated by syntaxin 4/SNAP23/VAMP2 SNARE complex formation. It is important to note that two different SM proteins have recently been shown to stimulate liposome fusion mediated by their cognate SNARE complexes. Given the structural similarities between SM proteins, it seems unlikely that different members of this family perform opposing regulatory functions. Hence, our findings indicate that Munc18c requires a further level of regulation in order to stimulate SNARE-mediated membrane fusion

    Cognitive impairment in patients with a schizoaffective disorder: a comparison with bipolar patients in euthymia

    Get PDF
    OBJECTIVES: Several studies have shown persistent neurocognitive impairment in patients with a bipolar affective disorder (BD) even in euthymia as well as in patients with a schizoaffective disorder (SAD). The aim of our study was to compare the neuropsychological performance between these two groups. Confounding variables were controlled to enhance our understanding of cognitive dysfunction in both BD and SAD. METHODS: Several domains of neurocognitive function, executive function, memory, attention, concentration and perceptuomotor function were examined in 28 euthymic SAD patients and 32 BD patients by using a neuropsychological test battery. The Hamilton Depression Rating Scale (HAMD), Montgomery-Asberg Depression Rating Scale (MADRS) and Young Mania Rating Scale (YMRS) were used to evaluate the patients' clinical status. Data analysis was performed by using a multivariate analysis of covariance (ANCOVA/MANCOVA). RESULTS: Euthymic SAD patients showed greater cognitive impairment than euthymic BD patients in the tested domains including declarative memory and attention. Putative significant group differences concerning cognitive flexibility vanished when controlled for demographic and clinical variables. Age and medication were robust predictors to cognitive performance of both SAD and BD patients. CONCLUSIONS: Our results point out the worse cognitive outcome of SAD compared to BD patients in remission. Remarkably, the variance is higher for some of the test results between the groups than within each group, this being discussed in light of the contradictive concept of SAD

    Chromosome-wide DNA methylation analysis predicts human tissue-specific X inactivation

    Get PDF
    X-chromosome inactivation (XCI) results in the differential marking of the active and inactive X with epigenetic modifications including DNA methylation. Consistent with the previous studies showing that CpG island-containing promoters of genes subject to XCI are approximately 50% methylated in females and unmethylated in males while genes which escape XCI are unmethylated in both sexes; our chromosome-wide (Methylated DNA ImmunoPrecipitation) and promoter-targeted methylation analyses (Illumina Infinium HumanMethylation27 array) showed the largest methylation difference (D = 0.12, p < 2.2 E−16) between male and female blood at X-linked CpG islands promoters. We used the methylation differences between males and females to predict XCI statuses in blood and found that 81% had the same XCI status as previously determined using expression data. Most genes (83%) showed the same XCI status across tissues (blood, fetal: muscle, kidney and nerual); however, the methylation of a subset of genes predicted different XCI statuses in different tissues. Using previously published expression data the effect of transcription on gene-body methylation was investigated and while X-linked introns of highly expressed genes were more methylated than the introns of lowly expressed genes, exonic methylation did not differ based on expression level. We conclude that the XCI status predicted using methylation of X-linked promoters with CpG islands was usually the same as determined by expression analysis and that 12% of X-linked genes examined show tissue-specific XCI whereby a gene has a different XCI status in at least one of the four tissues examined

    Similarity of Traveling-Wave Delays in the Hearing Organs of Humans and Other Tetrapods

    Get PDF
    Transduction of sound in mammalian ears is mediated by basilar-membrane waves exhibiting delays that increase systematically with distance from the cochlear base. Most contemporary accounts of such “traveling-wave” delays in humans have ignored postmortem basilar-membrane measurements in favor of indirect in vivo estimates derived from brainstem-evoked responses, compound action potentials, and otoacoustic emissions. Here, we show that those indirect delay estimates are either flawed or inadequately calibrated. In particular, we argue against assertions based on indirect estimates that basilar-membrane delays are much longer in humans than in experimental animals. We also estimate in vivo basilar-membrane delays in humans by correcting postmortem measurements in humans according to the effects of death on basilar-membrane vibrations in other mammalian species. The estimated in vivo basilar-membrane delays in humans are similar to delays in the hearing organs of other tetrapods, including those in which basilar membranes do not sustain traveling waves or that lack basilar membranes altogether

    The emerging modern face of mood disorders: a didactic editorial with a detailed presentation of data and definitions

    Get PDF
    The present work represents a detailed description of our current understanding and knowledge of the epidemiology, etiopathogenesis and clinical manifestations of mood disorders, their comorbidity and overlap, and the effect of variables such as gender and age. This review article is largely based on the 'Mood disorders' chapter of the Wikibooks Textbook of Psychiatry http://en.wikibooks.org/wiki/Textbook_of_Psychiatry/Mood_Disorders

    Pan-cancer deconvolution of tumour composition using DNA methylation

    Get PDF
    The nature and extent of immune cell infiltration into solid tumours are key determinants of therapeutic response. Here, using a DNA methylation-based approach to tumour cell fraction deconvolution, we report the integrated analysis of tumour composition and genomics across a wide spectrum of solid cancers. Initially studying head and neck squamous cell carcinoma, we identify two distinct tumour subgroups: ‘immune hot’ and ‘immune cold’, which display differing prognosis, mutation burden, cytokine signalling, cytolytic activity and oncogenic driver events. We demonstrate the existence of such tumour subgroups pan-cancer, link clonal-neoantigen burden to cytotoxic T-lymphocyte infiltration, and show that transcriptional signatures of hot tumours are selectively engaged in immunotherapy responders. We also find that treatment-naive hot tumours are markedly enriched for known immune-resistance genomic alterations, potentially explaining the heterogeneity of immunotherapy response and prognosis seen within this group. Finally, we define a catalogue of mediators of active antitumour immunity, deriving candidate biomarkers and potential targets for precision immunotherapy

    The neurocognitive functioning in bipolar disorder: a systematic review of data

    Full text link

    Statistical and integrative system-level analysis of DNA methylation data

    Get PDF
    Epigenetics plays a key role in cellular development and function. Alterations to the epigenome are thought to capture and mediate the effects of genetic and environmental risk factors on complex disease. Currently, DNA methylation is the only epigenetic mark that can be measured reliably and genome-wide in large numbers of samples. This Review discusses some of the key statistical challenges and algorithms associated with drawing inferences from DNA methylation data, including cell-type heterogeneity, feature selection, reverse causation and system-level analyses that require integration with other data types such as gene expression, genotype, transcription factor binding and other epigenetic information

    Cognitive impairment in bipolar disorder: neurodevelopment or neurodegeneration? An ECNP expert meeting report.

    No full text
    This is a report arising from an ECNP expert meeting. Recent studies have focussed on cognitive problems in manic-depressive illness and a few have addressed premorbid neuropsychological functioning. The results are not fully consistent but seem to point to a neurodegenerative model, rather than a neurodevelopmental one, for some cognitive domains. There is agreement that cognitive dysfunction is highly correlated with psychosocial functioning. The neurobiological and clinical implications of recent findings will be discussed. Treatments to reduce subsyndromal symptoms and relapses may indirectly improve neurocognitive deficits and this should be better documented. Moreover, neurocognitive impairment in bipolar disorder should be considered a potential therapeutic target, so that research should focus on new drugs and psychological interventions, including neurocognitive rehabilitation, addressed to improve not only the cognition but also the functional outcome of this population
    corecore