157 research outputs found
Interplay between genetic predisposition, macronutrient intake and type 2 diabetes incidence: analysis within EPIC-InterAct across eight European countries
AIMS/HYPOTHESIS: Gene-macronutrient interactions may contribute to the development of type 2 diabetes but research evidence to date is inconclusive. We aimed to increase our understanding of the aetiology of type 2 diabetes by investigating potential interactions between genes and macronutrient intake and their association with the incidence of type 2 diabetes. METHODS: We investigated the influence of interactions between genetic risk scores (GRSs) for type 2 diabetes, insulin resistance and BMI and macronutrient intake on the development of type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)-InterAct, a prospective case-cohort study across eight European countries (N = 21,900 with 9742 incident type 2 diabetes cases). Macronutrient intake was estimated from diets reported in questionnaires, including proportion of energy derived from total carbohydrate, protein, fat, plant and animal protein, saturated, monounsaturated and polyunsaturated fat and dietary fibre. Using multivariable-adjusted Cox regression, we estimated country-specific interaction results on the multiplicative scale, using random-effects meta-analysis. Secondary analysis used isocaloric macronutrient substitution. RESULTS: No interactions were identified between any of the three GRSs and any macronutrient intake, with low-to-moderate heterogeneity between countries (I2range 0-51.6%). Results were similar using isocaloric macronutrient substitution analyses and when weighted and unweighted GRSs and individual SNPs were examined. CONCLUSIONS/INTERPRETATION: Genetic susceptibility to type 2 diabetes, insulin resistance and BMI did not modify the association between macronutrient intake and incident type 2 diabetes. This suggests that macronutrient intake recommendations to prevent type 2 diabetes do not need to account for differences in genetic predisposition to these three metabolic conditions
Applications of CRISPR–Cas systems in neuroscience
Genome-editing tools, and in particular those based on CRISPR-Cas (clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein) systems, are accelerating the pace of biological research and enabling targeted genetic interrogation in almost any organism and cell type. These tools have opened the door to the development of new model systems for studying the complexity of the nervous system, including animal models and stem cell-derived in vitro models. Precise and efficient gene editing using CRISPR-Cas systems has the potential to advance both basic and translational neuroscience research.National Institute of Mental Health (U.S.) (Grant 5DP1-MH100706)National Institute of Mental Health (U.S.) (Grant 1R01-MH110049)National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant 5R01DK097768-03
Why and how does shared language affect subsidiary knowledge inflows? A social identity perspective
We draw on social identity theory to conceptualize a moderated mediation model that examines the relationship between shared language among subsidiary and HQ managers, and subsidiaries’ knowledge inflows from HQ.
Specifically, we study (1) whether this relationship is mediated by the extent to which subsidiary managers share HQ goals and vision, and the extent to which HR decisions are centralized; and (2) whether subsidiary type moderates these mediated relationships. Building on a sample of 817 subsidiaries in nine countries/regions, we find support for our model. Implications for research on HQ-subsidiary knowledge flows, social identity theory and international HRM are discussed
A Passerine Bird's Evolution Corroborates the Geologic History of the Island of New Guinea
New Guinea is a biologically diverse island, with a unique geologic history and topography that has likely played a role in the evolution of species. Few island-wide studies, however, have examined the phylogeographic history of lowland species. The objective of this study was to examine patterns of phylogeographic variation of a common and widespread New Guinean bird species (Colluricincla megarhyncha). Specifically, we test the mechanisms hypothesized to cause geographic and genetic variation (e.g., vicariance, isolation by distance and founder-effect with dispersal). To accomplish this, we surveyed three regions of the mitochondrial genome and a nuclear intron and assessed differences among 23 of the 30 described subspecies from throughout their range. We found support for eight highly divergent lineages within C. megarhyncha. Genetic lineages were found within continuous lowland habitat or on smaller islands, but all individuals within clades were not necessarily structured by predicted biogeographic barriers. There was some evidence of isolation by distance and potential founder-effects. Mitochondrial DNA sequence divergence among lineages was at a level often observed among different species or even genera of birds (5–11%), suggesting lineages within regions have been isolated for long periods of time. When topographical barriers were associated with divergence patterns, the estimated divergence date for the clade coincided with the estimated time of barrier formation. We also found that dispersal distance and range size are positively correlated across lineages. Evidence from this research suggests that different phylogeographic mechanisms concurrently structure lineages of C. megarhyncha and are not mutually exclusive. These lineages are a result of evolutionary forces acting at different temporal and spatial scales concordant with New Guinea's geological history
Prevalence of smoking during pregnancy and associated risk factors among Canadian women: a national survey
Cardiovascular inflammation in healthy women: multilevel associations with state-level prosperity, productivity and income inequality
<p>Abstract</p> <p>Background</p> <p>Cardiovascular inflammation is a key contributor to the development of atherosclerosis and the prediction of cardiovascular events among healthy women. An emerging literature suggests biomarkers of inflammation vary by geography of residence at the state-level, and are associated with individual-level socioeconomic status. Associations between cardiovascular inflammation and state-level socioeconomic conditions have not been evaluated. The study objective is to estimate whether there are independent associations between state-level socioeconomic conditions and individual-level biomarkers of inflammation, in excess of individual-level income and clinical covariates among healthy women.</p> <p>Methods</p> <p>The authors examined cross-sectional multilevel associations among state-level socioeconomic conditions, individual-level income, and biomarkers of inflammation among women (n = 26,029) in the Women's Health Study, a nation-wide cohort of healthy women free of cardiovascular diseases at enrollment. High sensitivity C-reactive protein (hsCRP), soluble intercellular adhesion molecule-1 (sICAM-1) and fibrinogen were measured between 1993 and 1996. Biomarker levels were examined among women within quartiles of state-level socioeconomic conditions and within categories of individual-level income.</p> <p>Results</p> <p>The authors found that favorable state-level socioeconomic conditions were correlated with lower hsCRP, in excess of individual-level income (e.g. state-level real per capital gross domestic product fixed effect standardized Βeta coefficient [Std B] -0.03, 95% CI -0.05, -0.004). Individual-level income was more closely associated with sICAM-1 (Std B -0.04, 95% CI -0.06, -0.03) and fibrinogen (Std B -0.05, 95% CI -0.06, -0.03) than state-level conditions.</p> <p>Conclusions</p> <p>We found associations between state-level socioeconomic conditions and hsCRP among healthy women. Personal household income was more closely associated with sICAM-1 and fibrinogen than state-level socioeconomic conditions. Additional research should examine these associations in other cohorts, and investigate what more-advantaged states do differently than less-advantaged states that may influence levels of cardiovascular inflammation among healthy women.</p
A LOV Protein Modulates the Physiological Attributes of Xanthomonas axonopodis pv. citri Relevant for Host Plant Colonization
Recent studies have demonstrated that an appropriate light environment is required for the establishment of efficient vegetal resistance responses in several plant-pathogen interactions. The photoreceptors implicated in such responses are mainly those belonging to the phytochrome family. Data obtained from bacterial genome sequences revealed the presence of photosensory proteins of the BLUF (Blue Light sensing Using FAD), LOV (Light, Oxygen, Voltage) and phytochrome families with no known functions. Xanthomonas axonopodis pv. citri is a Gram-negative bacterium responsible for citrus canker. The in silico analysis of the X. axonopodis pv. citri genome sequence revealed the presence of a gene encoding a putative LOV photoreceptor, in addition to two genes encoding BLUF proteins. This suggests that blue light sensing could play a role in X. axonopodis pv. citri physiology. We obtained the recombinant Xac-LOV protein by expression in Escherichia coli and performed a spectroscopic analysis of the purified protein, which demonstrated that it has a canonical LOV photochemistry. We also constructed a mutant strain of X. axonopodis pv. citri lacking the LOV protein and found that the loss of this protein altered bacterial motility, exopolysaccharide production and biofilm formation. Moreover, we observed that the adhesion of the mutant strain to abiotic and biotic surfaces was significantly diminished compared to the wild-type. Finally, inoculation of orange (Citrus sinensis) leaves with the mutant strain of X. axonopodis pv. citri resulted in marked differences in the development of symptoms in plant tissues relative to the wild-type, suggesting a role for the Xac-LOV protein in the pathogenic process. Altogether, these results suggest the novel involvement of a photosensory system in the regulation of physiological attributes of a phytopathogenic bacterium. A functional blue light receptor in Xanthomonas spp. has been described for the first time, showing an important role in virulence during citrus canker disease
A Phylogeny and Timescale for the Evolution of Pseudocheiridae (Marsupialia: Diprotodontia) in Australia and New Guinea
Pseudocheiridae (Marsupialia: Diprotodontia) is a family of endemic Australasian arboreal folivores, more commonly known as ringtail possums. Seventeen extant species are grouped into six genera (Pseudocheirus, Pseudochirulus, Hemibelideus, Petauroides, Pseudochirops, Petropseudes). Pseudochirops and Pseudochirulus are the only genera with representatives on New Guinea and surrounding western islands. Here, we examine phylogenetic relationships among 13 of the 17 extant pseudocheirid species based on protein-coding portions of the ApoB, BRCA1, ENAM, IRBP, Rag1, and vWF genes. Maximum parsimony, maximum likelihood, and Bayesian methods were used to estimate phylogenetic relationships. Two different relaxed molecular clock methods were used to estimate divergence times. Bayesian and maximum parsimony methods were used to reconstruct ancestral character states for geographic provenance and maximum elevation occupied. We find robust support for the monophyly of Pseudocheirinae (Pseudochirulus + Pseudocheirus), Hemibelidinae (Hemibelideus + Petauroides), and Pseudochiropsinae (Pseudochirops + Petropseudes), respectively, and for an association of Pseudocheirinae and Hemibelidinae to the exclusion of Pseudochiropsinae. Within Pseudochiropsinae, Petropseudes grouped more closely with the New Guinean Pseudochirops spp. than with the Australian Pseudochirops archeri, rendering Pseudochirops paraphyletic. New Guinean species belonging to Pseudochirops are monophyletic, as are New Guinean species belonging to Pseudochirulus. Molecular dates and ancestral reconstructions of geographic provenance combine to suggest that the ancestors of extant New Guinean Pseudochirops spp. and Pseudochirulus spp. dispersed from Australia to New Guinea ∼12.1–6.5 Ma (Pseudochirops) and ∼6.0–2.4 Ma (Pseudochirulus). Ancestral state reconstructions support the hypothesis that occupation of high elevations (>3000 m) is a derived feature that evolved on the terminal branch leading to Pseudochirops cupreus, and either evolved in the ancestor of Pseudochirulus forbesi, Pseudochirulus mayeri, and Pseudochirulus caroli, with subsequent loss in P. caroli, or evolved independently in P. mayeri and P. forbesi. Divergence times within the New Guinean Pseudochirops clade are generally coincident with the uplift of the central cordillera and other highlands. Diversification within New Guinean Pseudochirulus occurred in the Plio-Pleistocene after the establishment of the Central Range and other highlands
- …
