240 research outputs found

    Successful and unsuccessful cannabis quitters: Comparing group characteristics and quitting strategies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In order to improve treatments for cannabis use disorder, a better understanding of factors associated with successful quitting is required.</p> <p>Method</p> <p>This study examined differences between successful (<it>n </it>= 87) and unsuccessful (<it>n </it>= 78) cannabis quitters. Participants completed a questionnaire addressing demographic, mental health, and cannabis-related variables, as well as quitting strategies during their most recent quit attempt.</p> <p>Results</p> <p>Eighteen strategies derived from cognitive behavioral therapy were entered into a principal components analysis. The analysis yielded four components, representing (1) Stimulus Removal, (2) Motivation Enhancement, (3) (lack of) Distraction, and (4) (lack of) Coping. Between groups comparisons showed that unsuccessful quitters scored significantly higher on Motivation Enhancement and (lack of) Coping. This may indicate that unsuccessful quitters focus on the desire to quit, but do not sufficiently plan strategies for coping. Unsuccessful quitters also had significantly more symptoms of depression and stress; less education; lower exposure to formal treatment; higher day-to-day exposure to other cannabis users; and higher cannabis dependence scores.</p> <p>Conclusions</p> <p>The findings suggest that coping, environmental modification, and co-morbid mental health problems may be important factors to emphasize in treatments for cannabis use disorder.</p

    Lithic technological responses to Late Pleistocene glacial cycling at Pinnacle Point Site 5-6, South Africa

    Get PDF
    There are multiple hypotheses for human responses to glacial cycling in the Late Pleistocene, including changes in population size, interconnectedness, and mobility. Lithic technological analysis informs us of human responses to environmental change because lithic assemblage characteristics are a reflection of raw material transport, reduction, and discard behaviors that depend on hunter-gatherer social and economic decisions. Pinnacle Point Site 5-6 (PP5-6), Western Cape, South Africa is an ideal locality for examining the influence of glacial cycling on early modern human behaviors because it preserves a long sequence spanning marine isotope stages (MIS) 5, 4, and 3 and is associated with robust records of paleoenvironmental change. The analysis presented here addresses the question, what, if any, lithic assemblage traits at PP5-6 represent changing behavioral responses to the MIS 5-4-3 interglacial-glacial cycle? It statistically evaluates changes in 93 traits with no a priori assumptions about which traits may significantly associate with MIS. In contrast to other studies that claim that there is little relationship between broad-scale patterns of climate change and lithic technology, we identified the following characteristics that are associated with MIS 4: increased use of quartz, increased evidence for outcrop sources of quartzite and silcrete, increased evidence for earlier stages of reduction in silcrete, evidence for increased flaking efficiency in all raw material types, and changes in tool types and function for silcrete. Based on these results, we suggest that foragers responded to MIS 4 glacial environmental conditions at PP5-6 with increased population or group sizes, 'place provisioning', longer and/or more intense site occupations, and decreased residential mobility. Several other traits, including silcrete frequency, do not exhibit an association with MIS. Backed pieces, once they appear in the PP5-6 record during MIS 4, persist through MIS 3. Changing paleoenvironments explain some, but not all temporal technological variability at PP5-6.Social Science and Humanities Research Council of Canada; NORAM; American-Scandinavian Foundation; Fundacao para a Ciencia e Tecnologia [SFRH/BPD/73598/2010]; IGERT [DGE 0801634]; Hyde Family Foundations; Institute of Human Origins; National Science Foundation [BCS-9912465, BCS-0130713, BCS-0524087, BCS-1138073]; John Templeton Foundation to the Institute of Human Origins at Arizona State Universit

    Bi-galileon theory II: phenomenology

    Get PDF
    We continue to introduce bi-galileon theory, the generalisation of the single galileon model introduced by Nicolis et al. The theory contains two coupled scalar fields and is described by a Lagrangian that is invariant under Galilean shifts in those fields. This paper is the second of two, and focuses on the phenomenology of the theory. We are particularly interesting in models that admit solutions that are asymptotically self accelerating or asymptotically self tuning. In contrast to the single galileon theories, we find examples of self accelerating models that are simultaneously free from ghosts, tachyons and tadpoles, able to pass solar system constraints through Vainshtein screening, and do not suffer from problems with superluminality, Cerenkov emission or strong coupling. We also find self tuning models and discuss how Weinberg's no go theorem is evaded by breaking Poincar\'e invariance in the scalar sector. Whereas the galileon description is valid all the way down to solar system scales for the self-accelerating models, unfortunately the same cannot be said for self tuning models owing to the scalars backreacting strongly on to the geometry

    Genomics of Aerobic Cellulose Utilization Systems in Actinobacteria

    Get PDF
    Cellulose degrading enzymes have important functions in the biotechnology industry, including the production of biofuels from lignocellulosic biomass. Anaerobes including Clostridium species organize cellulases and other glycosyl hydrolases into large complexes known as cellulosomes. In contrast, aerobic actinobacteria utilize systems comprised of independently acting enzymes, often with carbohydrate binding domains. Numerous actinobacterial genomes have become available through the Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. We identified putative cellulose-degrading enzymes belonging to families GH5, GH6, GH8, GH9, GH12, GH48, and GH51 in the genomes of eleven members of the actinobacteria. The eleven organisms were tested in several assays for cellulose degradation, and eight of the organisms showed evidence of cellulase activity. The three with the highest cellulase activity were Actinosynnema mirum, Cellulomonas flavigena, and Xylanimonas cellulosilytica. Cellobiose is known to induce cellulolytic enzymes in the model organism Thermobifida fusca, but only Nocardiopsis dassonvillei showed higher cellulolytic activity in the presence of cellobiose. In T. fusca, cellulases and a putative cellobiose ABC transporter are regulated by the transcriptional regulator CelR. Nine organisms appear to use the CelR site or a closely related binding site to regulate an ABC transporter. In some, CelR also regulates cellulases, while cellulases are controlled by different regulatory sites in three organisms. Mining of genome data for cellulose degradative enzymes followed by experimental verification successfully identified several actinobacteria species which were not previously known to degrade cellulose as cellulolytic organisms

    Emergent Dark Matter, Baryon, and Lepton Numbers

    Get PDF
    We present a new mechanism for transferring a pre-existing lepton or baryon asymmetry to a dark matter asymmetry that relies on mass mixing which is dynamically induced in the early universe. Such mixing can succeed with only generic scales and operators and can give rise to distinctive relationships between the asymmetries in the two sectors. The mixing eliminates the need for the type of additional higher-dimensional operators that are inherent to many current asymmetric dark matter models. We consider several implementations of this idea. In one model, mass mixing is temporarily induced during a two-stage electroweak phase transition in a two Higgs doublet model. In the other class of models, mass mixing is induced by large field vacuum expectation values at high temperatures - either moduli fields or even more generic kinetic terms. Mass mixing models of this type can readily accommodate asymmetric dark matter masses ranging from 1 GeV to 100 TeV and expand the scope of possible relationships between the dark and visible sectors in such models.Comment: 36 pages, 5 figure

    Defective Resection at DNA Double-Strand Breaks Leads to De Novo Telomere Formation and Enhances Gene Targeting

    Get PDF
    The formation of single-stranded DNA (ssDNA) at double-strand break (DSB) ends is essential in repair by homologous recombination and is mediated by DNA helicases and nucleases. Here we estimated the length of ssDNA generated during DSB repair and analyzed the consequences of elimination of processive resection pathways mediated by Sgs1 helicase and Exo1 nuclease on DSB repair fidelity. In wild-type cells during allelic gene conversion, an average of 2–4 kb of ssDNA accumulates at each side of the break. Longer ssDNA is formed during ectopic recombination or break-induced replication (BIR), reflecting much slower repair kinetics. This relatively extensive resection may help determine sequences involved in homology search and prevent recombination within short DNA repeats next to the break. In sgs1Δ exo1Δ mutants that form only very short ssDNA, allelic gene conversion decreases 5-fold and DSBs are repaired by BIR or de novo telomere formation resulting in loss of heterozygosity. The absence of the telomerase inhibitor, PIF1, increases de novo telomere pathway usage to about 50%. Accumulation of Cdc13, a protein recruiting telomerase, at the break site increases in sgs1Δ exo1Δ, and the requirement of the Ku complex for new telomere formation is partially bypassed. In contrast to this decreased and alternative DSB repair, the efficiency and accuracy of gene targeting increases dramatically in sgs1Δ exo1Δ cells, suggesting that transformed DNA is very stable in these mutants. Altogether these data establish a new role for processive resection in the fidelity of DSB repair

    Evaluating real-time internet therapy and online self-help for problematic alcohol consumers: a three-arm RCT protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Only a minority of all alcohol- and drug abusers is receiving professional care. In an attempt to narrow this treatment gap, treatment facilities experiment with online healthcare. Therefore, it is important to test the (cost-)effectiveness of online health interventions in a randomized clinical trial.</p> <p>Methods</p> <p>This paper presents the protocol of a three-arm randomized clinical trial to test the (cost-) effectiveness of online treatment for problem drinkers. Self-help online, therapy online and a waiting list are tested against each other. Primary outcome is change in alcohol consumption. Secondary outcome measures include quality of life and working ability. Incremental cost-effectiveness ratios for self-help online alcohol and therapy online alcohol will be calculated. The predictive validity of participant characteristics on treatment adherence and outcome will be explored.</p> <p>Discussion</p> <p>To our best knowledge, this randomized clinical trial will be the first to test the effectiveness of therapy online against both self-help online and a waiting-list. It will provide evidence on (cost-) effectiveness of online treatment for problem drinkers and investigate outcome predictors.</p> <p>Trial registration</p> <p>This trial is registered in the Dutch Trialregister (Cochrane Collaboration) and traceable as NTR-TC1155.</p

    Impact of Neuroprotection on Incidence of Alzheimer's Disease

    Get PDF
    Converging evidence suggests that high levels of education and intellectual activity increase the cognitive reserve and reduce the risk of dementia. However, little is known about the impact that different neuroprotective strategies may have on the incidence of Alzheimer's disease. Using a simple mathematical regression model, it is shown here that age-specific counts of basic cognitive units (surrogate of neurons or synapses) in the normal population can be estimated from Alzheimer's incidence rates. Hence, the model can be used to test the effect of neuroprotection on Alzheimer's incidence. It was found that the number of basic cognitive units decreases with age, but levels off in older people. There were no gender differences after correcting for survival. The model shows that even modest neuroprotective effects on basic cognitive units can lead to dramatic reductions in the number of Alzheimer's cases. Most remarkably, a 5% increase in the cognitive reserve would prevent one third of Alzheimer's cases. These results suggest that public health policies aimed at increasing the cognitive reserve in the general population (e.g., implementing higher levels of education) are likely the most effective strategy for preventing Alzheimer's disease

    Assembling the Marine Metagenome, One Cell at a Time

    Get PDF
    The difficulty associated with the cultivation of most microorganisms and the complexity of natural microbial assemblages, such as marine plankton or human microbiome, hinder genome reconstruction of representative taxa using cultivation or metagenomic approaches. Here we used an alternative, single cell sequencing approach to obtain high-quality genome assemblies of two uncultured, numerically significant marine microorganisms. We employed fluorescence-activated cell sorting and multiple displacement amplification to obtain hundreds of micrograms of genomic DNA from individual, uncultured cells of two marine flavobacteria from the Gulf of Maine that were phylogenetically distant from existing cultured strains. Shotgun sequencing and genome finishing yielded 1.9 Mbp in 17 contigs and 1.5 Mbp in 21 contigs for the two flavobacteria, with estimated genome recoveries of about 91% and 78%, respectively. Only 0.24% of the assembling sequences were contaminants and were removed from further analysis using rigorous quality control. In contrast to all cultured strains of marine flavobacteria, the two single cell genomes were excellent Global Ocean Sampling (GOS) metagenome fragment recruiters, demonstrating their numerical significance in the ocean. The geographic distribution of GOS recruits along the Northwest Atlantic coast coincided with ocean surface currents. Metabolic reconstruction indicated diverse potential energy sources, including biopolymer degradation, proteorhodopsin photometabolism, and hydrogen oxidation. Compared to cultured relatives, the two uncultured flavobacteria have small genome sizes, few non-coding nucleotides, and few paralogous genes, suggesting adaptations to narrow ecological niches. These features may have contributed to the abundance of the two taxa in specific regions of the ocean, and may have hindered their cultivation. We demonstrate the power of single cell DNA sequencing to generate reference genomes of uncultured taxa from a complex microbial community of marine bacterioplankton. A combination of single cell genomics and metagenomics enabled us to analyze the genome content, metabolic adaptations, and biogeography of these taxa
    • …
    corecore