27 research outputs found

    High temporal resolution monitoring of multiple pollutant responses in drainage from an intensively managed grassland catchment caused by a summer storm

    Get PDF
    This work presents data on a suite of diffuse pollutants, monitored in a stream draining an intensively managed grassland on a 30 min time step during a period of intense rainfall to better understand their sources and pathways. Nitrite (92 mu g l(-1)), particulate phosphorus (107 mu g l(-1)) and soluble phosphorus (74 mu g l(-1)) exceeded environmental limits during base flow. Concentrations of nitrate and nitrite were decreased during the storm event, whereas all other pollutants generally increased and exceeded environmental limits where specified, especially when associated with a small subsidiary hydrograph on the rising limb of the main hydrograph. Total pollutants loads, when using a 60 min sampling frequency, would have led to significant over and under-estimations depending on which 60 min sample set was used. In the worst case, loads of ammonium could have been under-estimated by 35% or over estimated by 25% with errors being associated with loads on the rising limb of the hydrograph and more specifically a small subsidiary hydrograph. This subsidiary hydrograph may have occurred as a result of runoff from the farm hard standings within the catchment. Incidental transfer of pollutants associate with this runoff have masked the overall grassland pollutant response. To better understand these different source areas and pollutant dynamics, there is a need for novel tracing techniques to elucidate their relative contribution and pathways

    How do river nitrate concentrations respond to changes in land-use? A modelling case-study of headwaters in the River Derwent catchment, North Yorkshire, UK

    No full text
    A combined semi-distributed hydrological model (CASCADE/QUESTOR) is used to evaluate the steady-state that may be achieved after changes in land-use or management and to explore what additional factors need to be considered in representing catchment processes. Two rural headwater catchments of the River Derwent (North Yorkshire, UK) were studied where significant change in land-use occurred in the 1990s and the early 2000s. Much larger increases in mean nitrate concentration (55%) were observed in the catchment with significant groundwater influence (Pickering Beck) compared with the surface water-dominated catchment (13% increase). The increases in Pickering Beck were considerably greater than could be explained by the model in terms of land-use change. Consequently, the study serves to focus attention on the long-term increases in nitrate concentration reported in major UK aquifers and the ongoing and chronic impact this trend is likely to be having on surface water concentrations. For river environments, where groundwater is a source, such trends will mask the impact of measures proposed to reduce the risk of nitrate leaching from agricultural land. Model estimates of within-channel losses account for 15–40% of nitrate entering rivers

    Lipidomic Analysis of Biological Samples by Liquid Chromatography Coupled to Mass Spectrometry

    No full text
    Lipidomics studies the large-scale changes in nonwater-soluble metabolites (lipids) accompanying perturbations of biological systems. Because lipids are involved in crucial biological mechanisms, there is a growing scientific interest in using lipidomic approaches to understand the regulation of the lipid metabolism in all eukaryotic and prokaryotic organisms. Lipidomics is a powerful tool in system biology that can be used together with genomics, transcriptomics, and proteomics to answer biological questions arising from various scientific areas such as environmental sciences, pharmacology, nutrition, biophysics, cell biology, physiology, pathology, and disease diagnostics. One of the main challenges for lipidomic analysis is the range of concentrations and chemical complexity of different lipid species. In this chapter, we present a lipidomic approach that combines sample preparation, chromatographic, and intrasource ionization separation coupled to mass spectrometry for analyzing a broad-range of lipid molecules in biological samples
    corecore