6,332 research outputs found

    Monoclonal antibodies in neuro-oncology: Getting past the blood-brain barrier

    Get PDF
    Monoclonal antibodies (mAbs) are used with increasing success against many tumors, but for brain tumors the blood-brain barrier (BBB) is a special concern. The BBB prevents antibody entry to the normal brain; however, its role in brain tumor therapy is more complex. The BBB is closest to normal at micro-tumor sites; its properties and importance change as the tumor grows. In this review, evolving insight into the role of the BBB is balanced against other factors that affect efficacy or interpretation when mAbs are used against brain tumor targets. As specific examples, glioblastoma multiforme (GBM), primary central nervous system lymphoma (PCNSL) and blood-borne metastases from breast cancer are discussed in the context of treatment, respectively, with the mAbs bevacizumab, rituximab and trastuzumab, each of which is already widely used against tumors outside the brain. It is suggested that success against brain tumors will require getting past the BBB in two senses: physically, to better attack brain tumor targets, and conceptually, to give equal attention to problems that are shared with other tumor sites

    Matched sizes of activating and inhibitory receptor/ligand pairs are required for optimal signal integration by human Natural Killer cells

    Get PDF
    It has been suggested that receptor-ligand complexes segregate or co-localise within immune synapses according to their size, and this is important for receptor signaling. Here, we set out to test the importance of receptor-ligand complex dimensions for immune surveillance of target cells by human Natural Killer (NK) cells. NK cell activation is regulated by integrating signals from activating receptors, such as NKG2D, and inhibitory receptors, such as KIR2DL1. Elongating the NKG2D ligand MICA reduced its ability to trigger NK cell activation. Conversely, elongation of KIR2DL1 ligand HLA-C reduced its ability to inhibit NK cells. Whereas normal-sized HLA-C was most effective at inhibiting activation by normal-length MICA, only elongated HLA-C could inhibit activation by elongated MICA. Moreover, HLA-C and MICA that were matched in size co-localised, whereas HLA-C and MICA that were different in size were segregated. These results demonstrate that receptor-ligand dimensions are important in NK cell recognition, and suggest that optimal integration of activating and inhibitory receptor signals requires the receptor-ligand complexes to have similar dimensions

    A holographic model for the fractional quantum Hall effect

    Full text link
    Experimental data for fractional quantum Hall systems can to a large extent be explained by assuming the existence of a modular symmetry group commuting with the renormalization group flow and hence mapping different phases of two-dimensional electron gases into each other. Based on this insight, we construct a phenomenological holographic model which captures many features of the fractional quantum Hall effect. Using an SL(2,Z)-invariant Einstein-Maxwell-axio-dilaton theory capturing the important modular transformation properties of quantum Hall physics, we find dyonic diatonic black hole solutions which are gapped and have a Hall conductivity equal to the filling fraction, as expected for quantum Hall states. We also provide several technical results on the general behavior of the gauge field fluctuations around these dyonic dilatonic black hole solutions: We specify a sufficient criterion for IR normalizability of the fluctuations, demonstrate the preservation of the gap under the SL(2,Z) action, and prove that the singularity of the fluctuation problem in the presence of a magnetic field is an accessory singularity. We finish with a preliminary investigation of the possible IR scaling solutions of our model and some speculations on how they could be important for the observed universality of quantum Hall transitions.Comment: 86 pages, 16 figures; v.2 references added, typos fixed, improved discussion of ref. [39]; v.3 more references added and typos fixed, several statements clarified, v.4 version accepted for publication in JHE

    Holographic DC conductivities from the open string metric

    Full text link
    We study the DC conductivities of various holographic models using the open string metric (OSM), which is an effective metric geometrizing density and electromagnetic field effect. We propose a new way to compute the nonlinear conductivity using OSM. As far as the final conductivity formula is concerned, it is equivalent to the Karch-O'Bannon's real-action method. However, it yields a geometrical insight and technical simplifications. Especially, a real-action condition is interpreted as a regular geometry condition of OSM. As applications of the OSM method, we study several holographic models on the quantum Hall effect and strange metal. By comparing a Lifshitz background and the Light-Cone AdS, we show how an extra parameter can change the temperature scaling behavior of conductivity. Finally we discuss how OSM can be used to study other transport coefficients, such as diffusion constant, and effective temperature induced by the effective world volume horizon.Comment: 33 page

    Thermodynamics of Holographic Defects

    Full text link
    Using the AdS/CFT correspondence, we study the thermodynamic properties and the phase diagram of matter fields on (2+1)-dimensional defects coupled to a (3+1)-dimensional N=4 SYM "heat bath". Considering a background magnetic field, (net) quark density, defect "magnitude" δNc\delta N_c and the mass of the matter, we study the defect contribution to the thermodynamic potentials and their first and second derivatives to map the phases and study their physical properties. We find some features that are qualitatively similar to other systems e.g. in (3+1) dimensions and a number of features that are particular to the defect nature, such as its magnetic properties, unexpected properties at T->0 and finite density; and the finite δNc\delta N_c effects, e.g. a diverging susceptibility and vanishing density of states at small temperatures, a physically consistent negative heat capacity and new types of consistent phases.Comment: 33 pages, 16 figures (jpg and pdf), typos fixed and references added, final version published in JHE

    Economic factors influencing zoonotic disease dynamics: demand for poultry meat and seasonal transmission of avian influenza in Vietnam

    Get PDF
    While climate is often presented as a key factor influencing the seasonality of diseases, the importance of anthropogenic factors is less commonly evaluated. Using a combination of methods-wavelet analysis, economic analysis, statistical and disease transmission modelling-we aimed to explore the influence of climatic and economic factors on the seasonality of H5N1 Highly Pathogenic Avian Influenza in the domestic poultry population of Vietnam. We found that while climatic variables are associated with seasonal variation in the incidence of avian influenza outbreaks in the North of the country, this is not the case in the Centre and the South. In contrast, temporal patterns of H5N1 incidence are similar across these 3 regions: periods of high H5N1 incidence coincide with Lunar New Year festival, occurring in January-February, in the 3 climatic regions for 5 out of the 8 study years. Yet, daily poultry meat consumption drastically increases during Lunar New Year festival throughout the country. To meet this rise in demand, poultry production and trade are expected to peak around the festival period, promoting viral spread, which we demonstrated using a stochastic disease transmission model. This study illustrates the way in which economic factors may influence the dynamics of livestock pathogens

    Towards strange metallic holography

    Get PDF
    We initiate a holographic model building approach to `strange metallic' phenomenology. Our model couples a neutral Lifshitz-invariant quantum critical theory, dual to a bulk gravitational background, to a finite density of gapped probe charge carriers, dually described by D-branes. In the physical regime of temperature much lower than the charge density and gap, we exhibit anomalous scalings of the temperature and frequency dependent conductivity. Choosing the dynamical critical exponent zz appropriately we can match the non-Fermi liquid scalings, such as linear resistivity, observed in strange metal regimes. As part of our investigation we outline three distinct string theory realizations of Lifshitz geometries: from F theory, from polarised branes, and from a gravitating charged Fermi gas. We also identify general features of renormalisation group flow in Lifshitz theories, such as the appearance of relevant charge-charge interactions when z2z \geq 2. We outline a program to extend this model building approach to other anomalous observables of interest such as the Hall conductivity.Comment: 71 pages, 8 figure

    Treatment delays in paediatric dento-alveolar trauma at a tertiary referral hospital

    Get PDF
    Background: Paediatric dento-alveolar trauma is a common event. Delays in treatment can have adverse effects on long term outcomes and the aim of this study was to quantify the treatment delays in paediatric dento-alveolar trauma in a tertiary referral hospital. Methods: All cases of paediatric dento-alveolar trauma over a two-year period from July 2000 to June 2002 were identified and the charts were reviewed retrospectively. All children presenting the emergency department with dento-alveolar trauma within 48 hours of injury during the time period were included. Results: Forty-three patients were identified. The average age was 5.51 years, though there was a bias towards one and two year olds. Males were injured 1.5 times more frequently than females. There was an average delay of 9.6 hours between injury and treatment for all patients. Transit time from outside practitioners to hospital and waiting times in hospital made up the greatest delays. Children injured an average of 2.37 teeth and only 14 per cent were uncomplicated crown fractures. Conclusions: Children who present to children's hospitals for treatment of dento-alveolar trauma have more severe injuries than those treated elsewhere. They have large but potentially reducible delays between injury and treatment
    corecore