29 research outputs found

    Estimates of the global burden of ambient PM2.5, ozone, and NO2 on asthma incidence and emergency room visits

    Get PDF
    Abstract Background: Asthma is the most prevalent chronic respiratory disease worldwide, affecting 358 million people in 2015. Ambient air pollution exacerbates asthma among populations around the world and may also contribute to new-onset asthma. Objectives: We aimed to estimate the number of asthma emergency room visits and new onset asthma cases globally attributable to fine particulate matter (PM2.5), ozone, and nitrogen dioxide (NO2) concentrations. Methods: We used epidemiological health impact functions combined with data describing population, baseline asthma incidence and prevalence, and pollutant concentrations. We constructed a new dataset of national and regional emergency room visit rates among people with asthma using published survey data. Results: We estimated that 9–23 million and 5–10 million annual asthma emergency room visits globally in 2015 could be attributable to ozone and PM2.5, respectively, representing 8–20% and 4–9% of the annual number of global visits, respectively. The range reflects the application of central risk estimates from different epidemiological meta-analyses. Anthropogenic emissions were responsible for ∼37% and 73% of ozone and PM2.5 impacts, respectively. Remaining impacts were attributable to naturally occurring ozone precursor emissions (e.g., from vegetation, lightning) and PM2.5 (e.g., dust, sea salt), though several of these sources are also influenced by humans. The largest impacts were estimated in China and India. Conclusions: These findings estimate the magnitude of the global asthma burden that could be avoided by reducing ambient air pollution. We also identified key uncertainties and data limitations to be addressed to enable refined estimation. https://doi.org/10.1289/EHP376

    Updated global estimates of respiratory mortality in adults >/=30Years of age attributable to long-term ozone exposure

    No full text
    BACKGROUND: Relative risk estimates for long-term ozone (O3) exposure and respiratory mortality from the American Cancer Society Cancer Prevention Study II (ACS CPS-II) cohort have been used to estimate global O3-attributable mortality in adults. Updated relative risk estimates are now available for the same cohort based on an expanded study population with longer follow-up. OBJECTIVES: We estimated the global burden and spatial distribution of respiratory mortality attributable to long-term O3 exposure in adults >/=30y of age using updated effect estimates from the ACS CPS-II cohort. METHODS: We used GEOS-Chem simulations (2x2.5 masculine grid resolution) to estimate annual O3 exposures, and estimated total respiratory deaths in 2010 that were attributable to long-term annual O3 exposure based on the updated relative risk estimates and minimum risk thresholds set at the minimum or fifth percentile of O3 exposure in the most recent CPS-II analysis. These estimates were compared with attributable mortality based on the earlier CPS-II analysis, using 6-mo average exposures and risk thresholds corresponding to the minimum or fifth percentile of O3 exposure in the earlier study population. RESULTS: We estimated 1.04-1.23 million respiratory deaths in adults attributable to O3 exposures using the updated relative risk estimate and exposure parameters, compared with 0.40-0.55 million respiratory deaths attributable to O3 exposures based on the earlier CPS-II risk estimate and parameters. Increases in estimated attributable mortality were larger in northern India, southeast China, and Pakistan than in Europe, eastern United States, and northeast China. CONCLUSIONS: These findings suggest that the potential magnitude of health benefits of air quality policies targeting O3, health co-benefits of climate mitigation policies, and health implications of climate change-driven changes in O3 concentrations, are larger than previously thought. https://doi.org/10.1289/EHP1390
    corecore