45,496 research outputs found

    Fundamental length in quantum theories with PT-symmetric Hamiltonians

    Full text link
    The direct observability of coordinates x is often lost in PT-symmetric quantum theories. A manifestly non-local Hilbert-space metric Θ\Theta enters the double-integral normalization of wave functions ψ(x)\psi(x) there. In the context of scattering, the (necessary) return to the asymptotically fully local metric has been shown feasible, for certain family of PT-symmetric toy Hamiltonians H at least, in paper I (M. Znojil, Phys. Rev. D 78 (2008) 025026). Now we show that in a confined-motion dynamical regime the same toy model proves also suitable for an explicit control of the measure or width θ\theta of its non-locality. For this purpose each H is assigned here, constructively, the complete menu of its hermitizing metrics Θ=Θθ\Theta=\Theta_\theta distinguished by their optional "fundamental lengths" θ(0,)\theta\in (0,\infty). The local metric of paper I recurs at θ=0\theta=0 while the most popular CPT-symmetric hermitization proves long-ranged, with θ=\theta=\infty.Comment: 31 pp, 3 figure

    Stability of negative and positive trions in quantum wires

    Full text link
    Binding energies of negative (XX^-) and positive trions (X+X^+) in quantum wires are studied for strong quantum confinement of carriers which results in a numerical exactly solvable model. The relative electron and hole localization has a strong effect on the stability of trions. For equal hole and electron confinement, X+X^+ is more stable but a small imbalance of the particle localization towards a stronger hole localization e.g. due to its larger effective mass, leads to the interchange of XX^- and X+X^+ recombination lines in the photoluminescent spectrum as was recently observed experimentally. In case of larger XX^- stability, a magnetic field oriented parallel to the wire axis leads to a stronger increase of the X+X^+ binding energy resulting in a crossing of the X+X^+ and XX^- lines

    Entanglement quantification by local unitaries

    Full text link
    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitaries play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as "mirror entanglement". They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary. To the action of each different local unitary there corresponds a different distance. We then minimize these distances over the sets of local unitaries with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary for the associated mirror entanglement to be faithful, i.e. to vanish on and only on separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the "stellar mirror entanglement" associated to traceless local unitaries with nondegenerate spectrum and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of [Giampaolo and Illuminati, Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension, and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.Comment: 13 pages, 3 figures. Improved and generalized proof of monotonicity of the mirror and stellar entanglemen

    The Keck/OSIRIS Nearby AGN Survey (KONA) I. The Nuclear K-band Properties of Nearby AGN

    Full text link
    We introduce the Keck Osiris Nearby AGN survey (KONA), a new adaptive optics-assisted integral-field spectroscopic survey of Seyfert galaxies. KONA permits at ~0.1" resolution a detailed study of the nuclear kinematic structure of gas and stars in a representative sample of 40 local bona fide active galactic nucleus (AGN). KONA seeks to characterize the physical processes responsible for the coevolution of supermassive black holes and galaxies, principally inflows and outflows. With these IFU data of the nuclear regions of 40 Seyfert galaxies, the KONA survey will be able to study, for the first time, a number of key topics with meaningful statistics. In this paper we study the nuclear K-band properties of nearby AGN. We find that the luminosities of the unresolved Seyfert 1 sources at 2.1 microns are correlated with the hard X-ray luminosities, implying that the majority of the emission is non-stellar. The best-fit correlation is logLK = 0.9logL2-10 keV + 4 over 3 orders of magnitude in both K-band and X-ray luminosities. We find no strong correlation between 2.1 microns luminosity and hard X-ray luminosity for the Seyfert 2 galaxies. The spatial extent and spectral slope of the Seyfert 2 galaxies indicate the presence of nuclear star formation and attenuating material (gas and dust), which in some cases is compact and in some galaxies extended. We detect coronal-line emission in 36 galaxies and for the first time in five galaxies. Finally, we find 4/20 galaxies that are optically classified as Seyfert 2 show broad emission lines in the near-IR, and one galaxy (NGC 7465) shows evidence of a double nucleus.Comment: Accepted for publication in ApJ, 19 pages with 18 figure

    Range safety signal propagation through the SRM exhaust plume of the space shuttle

    Get PDF
    Theoretical predictions of plume interference for the space shuttle range safety system by solid rocket booster exhaust plumes are reported. The signal propagation was calculated using a split operator technique based upon the Fresnel-Kirchoff integral, using fast Fourier transforms to evaluate the convolution and treating the plume as a series of absorbing and phase-changing screens. Talanov's lens transformation was applied to reduce aliasing problems caused by ray divergence

    Reionization history constraints from neural network based predictions of high-redshift quasar continua

    Full text link
    Observations of the early Universe suggest that reionization was complete by z6z\sim6, however, the exact history of this process is still unknown. One method for measuring the evolution of the neutral fraction throughout this epoch is via observing the Lyα\alpha damping wings of high-redshift quasars. In order to constrain the neutral fraction from quasar observations, one needs an accurate model of the quasar spectrum around Lyα\alpha, after the spectrum has been processed by its host galaxy but before it is altered by absorption and damping in the intervening IGM. In this paper, we present a novel machine learning approach, using artificial neural networks, to reconstruct quasar continua around Lyα\alpha. Our QSANNdRA algorithm improves the error in this reconstruction compared to the state-of-the-art PCA-based model in the literature by 14.2% on average, and provides an improvement of 6.1% on average when compared to an extension thereof. In comparison with the extended PCA model, QSANNdRA further achieves an improvement of 22.1% and 16.8% when evaluated on low-redshift quasars most similar to the two high-redshift quasars under consideration, ULAS J1120+0641 at z=7.0851z=7.0851 and ULAS J1342+0928 at z=7.5413z=7.5413, respectively. Using our more accurate reconstructions of these two z>7z>7 quasars, we estimate the neutral fraction of the IGM using a homogeneous reionization model and find xˉHI=0.250.05+0.05\bar{x}_\mathrm{HI} = 0.25^{+0.05}_{-0.05} at z=7.0851z=7.0851 and xˉHI=0.600.11+0.11\bar{x}_\mathrm{HI} = 0.60^{+0.11}_{-0.11} at z=7.5413z=7.5413. Our results are consistent with the literature and favour a rapid end to reionization
    corecore