565 research outputs found

    Eight out of ten isn't good enough: challenging teachers' perceptions of assessment

    Get PDF
    One of the more challenging aspects of training teachers is demonstrating that assessment is a great deal more complex than simply marking students' work. It is necessary to show that assessment takes a number of forms, that it is used for a variety of purposes and that it must be applied in a systematic and structured way in order to be effective. This paper describes the techniques used at the Institute of Education, University of London, to encourage training teachers to look at assessment in a new way. The whole-year programme is outlined, but emphasis is placed on an introductory session held at the start of the course. Ostensibly a simple ice-breaking exercise, the game in fact demonstrates many of the pit-falls of assessment and brings to life terms which the trainees will encounter more formally later on in the course

    Reviews

    Get PDF
    Seels, Barbara B. and Richey, Rita C, Instructional Technology: The Definition and Domains of the Field, Washington DC, Association for Educational Communications and Technology, 1994. ISBN 0–89240–072–2

    Double layer effects in voltammetric measurements with scanning electrochemical microscopy (SECM)

    Get PDF
    Scanning electrochemical microscopy (SECM) operating as a variable gap ultra-thin layer twin-working electrode cell, has long been recognised as a powerful technique for investigating fast kinetics (heterogeneous electron transfer and homogeneous reactions coupled to electron transfer) as a consequence of high mass transport rates between the working electrodes when biased to promote redox shuttling. Recently, SECM has advanced technically and nanogap cells with dimensions on the 10s of nm scale have been reported. In this paper, we consider double layer effects on voltammetric measurements in this configuration, outlining a comprehensive model that solves the Nernst-Planck equation and Poisson equation with charged interfaces. For supporting electrolyte concentrations that have been used for such measurements (50 mM and 100 mM), it is shown that for typical electrode charges and charge on the glass insulator that encases the ultramicroelectrode (UME) tip used in SECM, there are profound effects on the voltammetric wave-shapes for redox reactions of charged redox couples, in the common modes used to study electron transfer kinetics, namely the tip-voltammetry (feedback) mode and substrate-voltammetry (substrate-generation/tip-collection and competition) modes. Using the reduction and oxidation of a singly charged redox species to a neutral and doubly charged species, respectively, as exemplar systems, it is shown that the charge on the electrodes can greatly distort the voltammetric wave-shape, while charge on the glass that surrounds the UME tip can affect the limiting current. Analysis of SECM voltammograms using methods that do not account for double layer effects will thus result in significant error in the kinetic values derived and tip-substrate distances that have to be estimated from limiting currents in SECM. The model herein provides a framework that could be developed for further studies with nanogap-SECM (e.g. consideration of alternative models for the electrical double layer, other supporting electrolyte concentrations, potential of zero charge on the electrodes and charges on the redox couples). The model results presented are shown to qualitatively match to SECM voltammetric features from experimental data in the literature, and are further supported by experimental data for redox processes of tetrathiafulvalene (TTF), namely the TTF/TTF+ and TTF+/TTF2+ redox couples. This serves to demonstrate the immediate practical application of some of the ideas presented herein. For future applications of SECM, the use of different supporting electrolyte concentrations and a range of tip-substrate separations may allow the determination of both electron transfer kinetics and double layer properties

    Stability and placement of Ag/AgCl quasi-reference counter electrodes in confined electrochemical cells

    Get PDF
    Nanoelectrochemistry is an important and growing branch of electrochemistry that encompasses a number of key research areas, including (electro)catalysis, energy storage, biomedical/environmental sensing, and electrochemical imaging. Nanoscale electrochemical measurements are often performed in confined environments over prolonged experimental time scales with nonisolated quasi-reference counter electrodes (QRCEs) in a simplified two-electrode format. Herein, we consider the stability of commonly used Ag/AgCl QRCEs, comprising an AgCl-coated wire, in a nanopipet configuration, which simulates the confined electrochemical cell arrangement commonly encountered in nanoelectrochemical systems. Ag/AgCl QRCEs possess a very stable reference potential even when used immediately after preparation and, when deployed in Cl– free electrolyte media (e.g., 0.1 M HClO4) in the scanning ion conductance microscopy (SICM) format, drift by only ca. 1 mV h–1 on the several hours time scale. Furthermore, contrary to some previous reports, when employed in a scanning electrochemical cell microscopy (SECCM) format (meniscus contact with a working electrode surface), Ag/AgCl QRCEs do not cause fouling of the surface (i.e., with soluble redox byproducts, such as Ag+) on at least the 6 h time scale, as long as suitable precautions with respect to electrode handling and placement within the nanopipet are observed. These experimental observations are validated through finite element method (FEM) simulations, which consider Ag+ transport within a nanopipet probe in the SECCM and SICM configurations. These results confirm that Ag/AgCl is a stable and robust QRCE in confined electrochemical environments, such as in nanopipets used in SICM, for nanopore measurements, for printing and patterning, and in SECCM, justifying the widespread use of this electrode in the field of nanoelectrochemistry and beyond

    A study of the E.P.R. spectrum of potassium sulfate : copper(2+).

    Get PDF
    Source: Masters Abstracts International, Volume: 40-07, page: . Thesis (M.Sc.)--University of Windsor (Canada), 1982

    Does a Ketogenic Diet Have a Place Within Diabetes Clinical Practice? Review of Current Evidence and Controversies

    Get PDF
    Carbohydrate restriction has gained increasing popularity as an adjunctive nutritional therapy for diabetes management. However, controversy remains regarding the long-term suitability, safety, efficacy and potential superiority of a very low carbohydrate, ketogenic diet compared to current recommended nutritional approaches for diabetes management. Recommendations with respect to a ketogenic diet in clinical practice are often hindered by the lack of established definition, which prevents its capacity to be most appropriately prescribed as a therapeutic option for diabetes. Furthermore, with conflicted evidence, this has led to uncertainty amongst clinicians on how best to support and advise their patients. This review will explore whether a ketogenic diet has a place within clinical practice by reviewing current evidence and controversies

    Electrochemical control of calcium carbonate crystallization and dissolution in nanopipettes

    Get PDF
    Electrochemically-controlled nanopipettes are becoming increasingly versatile tools for a diverse range of sequencing, sizing and imaging applications. Herein, the use of nanopipettes to induce and monitor quantitatively crystallization and dissolution in real time is considered, using CaCO3 in aqueous solution as an exemplar system. The bias between a quasi-reference counter electrode (QRCE) in a nanopipette and one in a bulk solution, is used to mix (or de-mix) two different solutions by ion migration and drive either growth or dissolution depending on the polarity. Furthermore, Raman spectroscopy can be applied simultaneously to identify polymorphs formed in the nanopipette. The technique is supported with a robust finite element method (FEM) model that allows the extraction of time-dependent saturation levels and mixing characteristics at the nanoscale. The technique shows great promise as a tool for rapidly screening growth additives and inhibitors, allowing eight different additives to be ranked in order of efficacy for crystal growth rate inhibition
    • …
    corecore