University of Windsor Scholarship at UWindsor

Electronic Theses and Dissertations

1982

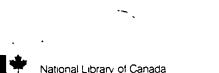
A study of the E.P.R. spectrum of potassium sulfate : copper(2+).

David John. Unwin University of Windsor

Follow this and additional works at: http://scholar.uwindsor.ca/etd

Recommended Citation

Unwin, David John., "A study of the E.P.R. spectrum of potassium sulfate : copper(2+)." (1982). *Electronic Theses and Dissertations*. Paper 792.


This online database contains the full-text of PhD dissertations and Masters' theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email (scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

· · · ·

CANADIAN THESES ON MICROFICHE

I.S.B.N.

THESES CANADIENNES SUR MICROFICHE

Collections Development Branch

Canadian Theses on Microfiche Service Service des thèses canadiennes sur microfiche

Direction du développement des collections

Bibliothèque nationale du Canada

Ottawa, Canada K1A 0N4

2

NOTICE

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us a poor photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, Please read the authorization forms which accompany this thesis.

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED

AVIS

La qualité de cette microfiche dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'univer sité nous a fait parvenir une photocopie de mauvaise qualité.

Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, examens publiés, etc.) ne sont pas microfilmés.

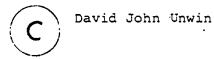
La reproduction, même partielle, de ce microfilm est soumise à la Loi canadienne sur le droit d'auteur, - SRC 1970, c. C-30. Veuillez prendre connaissance des formules d'autorisation qui accompagnent cette thèse.

> LA THÈSE A ÉTÉ MICROFILMÉE TELLE QUE NOUS L'AVONS RECUE

NU-339 (F. 87,98

A STUDY OF THE E.P.R. SPECTRUM

۰.


.

OF K_2SO_4 : Cu^{2+}

۲

•`••

ьу

A Thesis Submitted to the Faculty of Graduate Studies through the Department of Physics in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Windsor

-

Windsor, Ontario

ABSTRACT

The system $K_2SO_4:Cu^{2+}$ produces four sets of spectra and the previously uninvestigated weak set was studied by electron paramagnetic resonance methods.

The data were fitted to the spin Hamiltonian

H = S.g.H + S.A.I. + I.Q.I

 \mathbf{C}

using an exact diagonalization process and a multi dimensional least squares method. The parameters were found to be (in crystallographic co-ordinates)

gxx	АЛЛ	gzz
2.5396 <u>+</u> .0001	2.1296± .0001	2.0920 <u>+</u> .0001
дху	gzx	gzy
0.1023 <u>+</u> .0001	0.0347 <u>+</u> .0001	0.0516 <u>+</u> .0002
$A_{x-10}^{-4} \text{ cm}^{-1}$	Ауу	, Azz
/ 205.3 <u>+</u> 0.9	19.9 <u>+</u> 5.6	38.5 <u>+</u> 4.0
Axy	Azx	Azy
88.3 <u>+</u> 2.0	2.3 <u>+</u> 1.6	-36.9 <u>+</u> 4.5
$Qx-10^{-4}$ cm ⁻¹	Qy	
20.6+2	3.8 <u>+</u> 0.6	

Diagonalization of g and A tensors show that they are highly non-coincident. This is due to a very low symmetry environment of the paramagnetic impurity. Reasonable agreement with a previously suggested charge compensation mode was also found.

ACKNOWLEDGEMENTS

The author wishes to thank Dr. F. Holuj for his guidance during the work and Dr. M. Khan for x-ray crystallography enabling identification of axes.

TABLE OF CONTENTS

.

.

.

.

		E	Page
ABSTRACI	2		iii
ACKNOWLE	DGEMENTS	· •	v
LIST OF	TALBES	,	viii
LIST OF	FIGURES		ix
CHAPTER			
I.	INTRODUCTION	AND PURPOSE OF EXPERIMENT	1
II.	THE CRYSTAL S	TRUCTURE OF K2 ^{SO} 4	2
III.	THEORY		4
	A. Elec	tron Paramagnetic Resonance	4
	B. The	Divalent Copper Ion	6
	C. The	Complete Hamiltonian	7
	D. The	Spin Hamiltonian	ò
IV.	INSTRUMENTAT	ION	12
	A. K-Bo	ond Spectrometer	12
	(1)	Klystron Stabilizer	12
	(2)	Microwave Circuit	14
	(3)	External Magnetic Field and Modulations	17
	B. Pro	ton Magnetometer	17
v.	EXPERIMENTAL	PROCEDURE	
	(1)	Crystal Orientation	18
	(2)	Measurement of Magnetic Field	26
	(3)	Measurement of Microwave Frequency	r 28
VI.	DEVELOPMENT	OF COMPUTER PROGRAM	29
	A. The	Method	29

•

B. The Flow Chart	34
C. Rate of Convergence	37
VII. DISCUSSION AND CONCLUSION	39
BIBLIOGRAPHY	48 ·
APPENDIX 1. DATA	49
2. Identification of Crystallographic axes	51
3. Program used for calculating P(I)	52
4. STCM: Similarity Transform Converts Matrix Elements to New Basis	55
5. RTN 1: Main Subroutine	56
6. CEIGEN - Computes Eigenvalues and Eigenrectors of Hemitian Matrix (double precision complex)	63
7. DGMPRO: Matrix Multiplication of two general double precision matrices	64
8. Diagonalization of g and A tensor	65
VITA AUCTORIS	68
· · · ·	
-	

.

.

. *

· · · ·

LIST OF. TABLES

			Page
IV.	1	Rate of Convergence	37
VII.	1	Spectral Parameters	40

LIST OF FIGURES

			Page
II.	1	Crystal Structure of K ₂ SO ₄	3
IV.	1	Block Diagram of Spectrometer	13
IV.	3	Diagram of Microwave Detector and Balanced transformer	1,5
V. 1.	- 3	Spectra along crystallographic axes	19,20,21
V. 4.	-6	Angular variation	23,24,25
v.	7	P.M.R. Probe	27
v.	8	P.M.R. Signal	28
VI.	1	Block diagram of Computer Program	35
VII.	1	Crystal Structure of K ₂ SO ₄	42
VII.	3	Sereogram of g and A tensors	43

ix

X94

CHAPTER I

INTRODUCTION AND PURPOSE OF EXPERIMENT

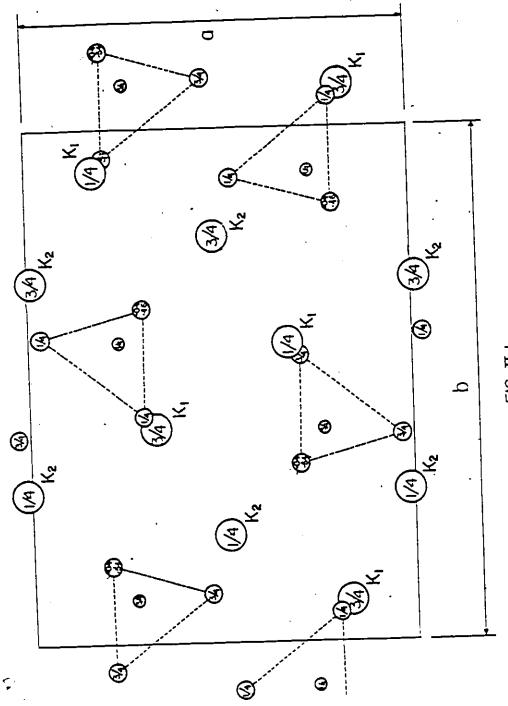
Although the initial objective had been to study $\text{LiK}_2\text{So}_4^4:\text{Cu}^{2+}$ obtaining samples proved to be difficult and $\text{K}_2\text{SO}_4:\text{Cu}^{2+}$ was in-vestigated instead.

The course of searching for a crystal of LiK_2So_4 with sufficient copper doping to produce strong electron paramagnetic resonance signals yielded crystals of K_2SO_4 with extremely strong signals.

Although the spectrum of $K_2SO_4:Cu^{2+}$ had previously been investigated by Abdulsabirov¹ and Freeman², these investigations left open the questions of non coincident g and A tensor and although Abdulsabirov¹ had evaluated three sets of spectra, the charge compensation mechanism they suggested left open the possibility of a fourth mechanism and a set of weak lines had not been investigated by 1 or 2.

The purpose of the investigation was to evaluate the spectrum of this weak set and to check agreement with both the charge compensation mechanism suggested by 1 and the non-coincidences reported by 2. For this purpose crystals containing a single isotope Cu^{63} were prepared thus yielding a greater resolution since the relaxation times (spin-lattice) at 77° K were such that the Cu^{63} and Cu^{65} lines overlapped.

CHAPTER II


THE CRYSTAL STRUCTURE OF K2S04

X-ray studies ³ have shown that K_2SO_4 is orthorhombic with a=7.456Å, b=10.08Å, c=5.776Å and has space group Pnam (D_{2n}^{16}) .

Each unit cell contains 4 formula units and the SO_4 groups form groups of symmetry related tetrahedra.

A diagram of the crystal structure is shown in fig. II.1 with a box around the unit cell.

The crystals were grown from aqueous solution by slow evaporation at room temperature and doped with Cu⁶³ during growth...

P

FIG II.I

THEORY

A. Electron Paramagnetic Resonance

This phenomenon was first reported by Zavoyskiy⁴ in 1945 and refers to the magnetic resonance of permanent magnetic dipole . moments of electrons.

Paramagnetic centres may be produced in various ways, some of which are,

1.) Radicals in solids

2.) Radiation damage centres

3.) Molecule-like complexes in a solid matrix

4.) Paramagnetic impurities

In our case, 4), the paramagnetic impurity is a copper dopant $_{\rm Cu}{}^{2+}.$

If we consider the case of a single paramagnetic ion which is not interacting with other impurity ions via dipole-dipole interactions and has a single unpaired electron in an S state with a "spin-only" magnetic dipole moment of $m_{S}g_{S}\beta$ ($m_{S}=1/2$, β is the Bohr magneton, $g_{S} = g$ free electron), then in a magnetic field the spin degeneracy is resolved and the dipole may orient itself parallel or antiparallel to the external magnetic field with corresponding energies $\pm \frac{1}{2}\beta g_{S}H$, and this is the familiar Zeeman effect.

L

Considering an ensemble of such ions we may observe magnetic dipole transitions induced between these two levels by applying a high frequency magnetic field polarized perpendicularly to H which satisfies the resonance condition.

h) =gsBH

Resonance absorption will then be observed corresponding to dipoles being shipped from parallel to to antiparellel to \vec{H} .

Emission will also be induced although when the system remains in thermal equilibrium the population of $\vec{\mu}$ dipole parallel to H will exceed that of $\vec{\mu}$ dipole antiparallel to H, and a net absorption will occur.

Zeeman separations at 10 KG are typically 0.0 kT_{room} ~ 200 cm⁻¹ and since it is the slight difference in populations which gives rise to observable transitions the absorption is enhanced at lower temperatures. Another advantage of lower temperatures is that a major source of E.P.R. line broadening is spin-lattice relaxation and since spin-lattice relaxation time generally increases at lower temperatures the line width is reduced.

Other effects which cause line broadening are spin-spin interactions and exchange effects, neither of which are important in our case.

The spectra discussed here were all recorded at liquid nitrogen.temperature $(77^{\circ} K)$.

Consider an ion having an orbitally non degenerate ground state with spin S. The "spin-only" interaction with an external magnetic field will be

=26ਸ਼.ਤੋ

If \vec{H} is parallel to \vec{Z} then the term splits into (2SH) equally spaced levels with energies 2β HM_s and a separation 2β H between adjacent levels.

Magnetic dipole transitions will have intensities proportional to

$$\mathbb{P}_{\mathbf{\varepsilon}} = |\langle \phi_{\text{Final}} | (\mathbb{L}_{\mathbf{\varepsilon}} \to g_{\text{s}} S_{\mathbf{\varepsilon}}) | \phi_{\text{Initial}} \rangle|^{2}$$

as a consequence of Fermi/s Golden Rule. The subscript $\boldsymbol{\varepsilon}$ denotes the component along the direction of the magnetic vector of the incident radiation. With p_c as above we have, $(\hat{\boldsymbol{H}}=\hat{\boldsymbol{H}}z)$

 $P_{x} = P_{y} = S(S+1) - M_{s}(M_{s}+1)$

for the transition $|SM_s \rightarrow |SM_{s+1} \rangle$ and $P_x = P_y = P_z = 0$ for all other transitions. So we have the selection rule $\Delta M_s = \pm 1$. In practice this simple scheme is complicated by crystal field effects, spin-orbit coupling and hyperfine interactions. Hyperfine interaction between the electron and the magnetic moment of the nucleus results in a further splitting of each M_s level into (2I+1) levels.

B. The divalent Copper Ion

The ground state of the copper atom has the electronic configuration

 $1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{10}4s$ Thus giving a²s term, the divalent copper ion has a configuration $1s^{2}2s^{2}2p^{6}3s^{2}3p^{6}3d^{9}$ Resulting in a^2D term, L=2, s=1/2. This can conveniently be treated as a hole in a closed 3d shell in the complementary scheme.

C. The Complete Hamiltonian

The complete hamiltonian operator for a paramagnetic ion a crystalline field and zero magnetic field is

 $= T + V_{c} + V_{so} + V_{x} + V_{ss} + V_{sI} + V_{Q}$ (III.1) where;

$$T = \frac{\sum_{k} (p_k^2/2M)}{k}$$

is the total KE of the $k^{\mbox{th}}$ electron with momentum \mbox{p}_k and mass M and the sum extends over all the electons for the ion.

The Coulomb term ${\rm V}_{\rm C}$ consists of

 $v_{c} = -\sum_{k} \frac{ze^{2}}{r_{k}} + \frac{1}{2} \sum_{ij} \frac{e^{2}}{r_{ij}}$ $i \neq j$

The first term is the Coulomb attraction between the K^{th} electron and the nucleus and the second term is the Coulomb interaction between electrons summed over all electrons in the ion. The factor of 1/2 eliminates double counting.

The V term is the contribution due to spin-orbit coupling and can be written as

 $v_{so} = \sum_{ij} \lambda_{ij} \vec{1}_{i} \vec{s}_{j}$

Where i and j are summed over all electrons in the ion. With Russell-Saunders coupling this becomes

 $\sum_{i} \vec{1}_{i} = \vec{L} \text{ and } \sum_{i} \vec{s}_{i} = \vec{S}$

And so V_{so} becomes $V_{so} = \lambda \vec{L} \cdot \vec{s}$

where is the spin-orbit coupling constant and depends on some radial integral.

 v_x represents the interaction between the paramagnetic ion and the crystal field potential

 $v_x = -\sum_k e \Phi(\vec{r}_k)$

 V_{ss} represents the magnetic dipole-dipole interaction between electrons and in our case can be set equal to zero since we are dealing with a dilute impurity with a single hole.

 v_{SI} represents the magnetic interaction between unpaired electrons and the nuclear moments of both central ion and ligands. In our case no superhyperfine interaction was observed.

A full relativistic treatment of the interaction between an electron and the nuclear magnetic moment of the nucleus (see Griffith § 5.5.3) shows that the interaction adds a term

 $= 2 \hat{I} \beta \beta_{N} \vec{1} \cdot \left\{ f(r^{-3} \vec{1} - r^{-3} \vec{s} + 3r^{-5} (\vec{s} \cdot \vec{r}) \vec{r}) + r^{-2} \frac{df}{dr} (\vec{s} - r^{-2} (\vec{s} \cdot \vec{r}) \vec{r}) \right\} r$

where $f = 1 - \frac{E + eA_0}{2mc^2}$ and is close to unity.

After a lot of heavy algebra and with the use of the replacement theorem of equivalent operators this can be written as (within a term):

 $H_{m} = P\left\{\vec{L} \cdot \vec{1} - K(\vec{s} \cdot \vec{1}) + \xi \vec{L}(L+1)\vec{s} \cdot \vec{1} - \frac{3}{2}(\vec{L} \cdot \vec{s}) - \frac{3}{2}(\vec{L} \cdot \vec{1})(\vec{L} \cdot \vec{s})\right\}$ with,

 $P = 2 \beta \beta_N \langle r^{-3} \rangle$

 ${\bf Y}$ depends on the nucleus in question and ${\bf \beta}_N$ is the nuclear magneton,

and,

 $\xi = \frac{2 + 1 - 4S}{S(21 - 1)(21 + 3)(2L - 1)}$

Within a d^{Ω} configuration there should not be a Fermi contribution of the form \vec{S} . \vec{T} but configuration interaction means that there is always an unpaired spin density at the nucleus from s wave contributions which are mixed in by configuration interaction. This warrants the term $\mathbf{K}(\vec{S},\vec{T})$ but unfortunately there is no accurate way of calculating \mathbf{K} .

 $V_{\mathbf{Q}}$ represents the quadrupole interaction between the nuclear and electronic quadrupole moments and can be written as the equivalent operator:

1.**Q**.**1**

Since in practice this is a small contribution, only diagonal elements are considered and application of $\vec{\nabla} \cdot \vec{E} = p$ gives the extra condition that $\text{Tr}(\mathbf{Q}) = 0$. If only $\Delta_{\text{MI}} = 0$ transitions are considered then $\text{Tr}(\mathbf{Q})$ is in any case indeterminate since it only adds a constant $\frac{1}{3}\text{Tr}(\mathbf{Q})I(I+1)$ to the Hamiltonian.

D. The spin Hamiltonian

The complete Hamiltonian as written in III.l is too cumbersome to work with and in our case V_x is unknown.

For the fitting of the recorded spectra we make use of an equivalent Hamiltonian of the form:

 $H = \vec{S}.g.\vec{H} + \vec{S}.A.\vec{I} + \vec{I}.Q.\vec{I}$

• '....

The first term is the electronic Zeeman term and the g "tensor" reflects anisotropy in the spectrum due to spin-orbit and crystal field effects. The S here is not the actual spin of the system but is an effective spin, often called "ficticious spin". (2S+1) is equal to the number of electronic levels in the ground state of the ion.

The second term describes the magnetic hyperfine interaction discussed earlier. The A "tensor" describes both the magnetic interaction and the Fermi contact interaction.

The third term is an equivalent operator form for the interaction between the electronic and nuclear quadrupole moments as discussed earlier. The restriction $\operatorname{Tr}(Q) = 0$ reduces the number of empirical factors needed to fit the spectrum since $\operatorname{Tr}(Q)$ only adds a constant $\operatorname{lTr}(Q)\operatorname{I}(\operatorname{I+l})$ to H if $\Delta_{\operatorname{MI}} = 0$ only transitions are considered. It's inclusion is warranted by the fact that at certain orientations $\Delta_{\operatorname{MI}} = \pm 1$ "forbidden" transitions are easily seen. This is because this non linear term in I means M_I is no longer a good quantum number.

If we choose a frame of reference which diagonalizes the g "tensor" then the Zeeman term can be written as

$$H = (S_{x}, S_{y}, S_{z}) \cdot \begin{pmatrix} g_{x} \circ \circ \\ \circ g_{y} \circ \\ \circ \circ g_{z} \end{pmatrix} \cdot \begin{pmatrix} H_{x} \\ H_{y} \\ H_{z} \end{pmatrix}$$
$$= (g_{x}S_{x}H_{x} + g_{y}S_{y}H_{y} + g_{z}S_{z}H_{z})$$

Similarly for the A "tensor" $H = (A_{x'} S_{x'} I_{x'} + A_{y'} S_{y'} I_{y'} + A_{z'} S_{z'} I_{z'})$

Although for low symmetries it may not be possible to diagonalize g and A simultaneously as we shall see.

5 g

۲

7

· ·

. .

-

·

CHAPTER IV

INSTRUMENTATION

A. K-Band Spectrometer

The K-band spectrometer used was of balanced bridge design, using a circulator, with the microwave frequency stabilized against the sample cavity. A block diagram is shown in fig. IV.1. The microwave power was supplied by a Varian model VA98E reflex klystron producing 30mW of power.

(1) Klystron Stabilizer

The klystron frequency was stabilized to the cavity resonant frequency using a Teltronic model KSLP Klystron Stabilizer. The stabilizer works on the principle of automatic frequency control (A.F.C.). A sine wave modulation of approximately 70 KHz was impressed on the reflector voltage thus causing a small amount of frequency modulation. If the Klystron frequency is tuned at or near the cavity resonant frequency, the output detected by the A.F.C. signal is amplified and then applied to the phase sensitive detector (P.S.D.) built into the stabilizer, which compares the signal with the original modulation signal. The result is a D.C. error voltage with a polarity and magnitude proportional to the difference between the klystron'oscillator frequency and the resonant frequency of the cavity. The error voltage is applied to the reflector of klystron in such a manner that the klystron frequency is pulled back to the frequency

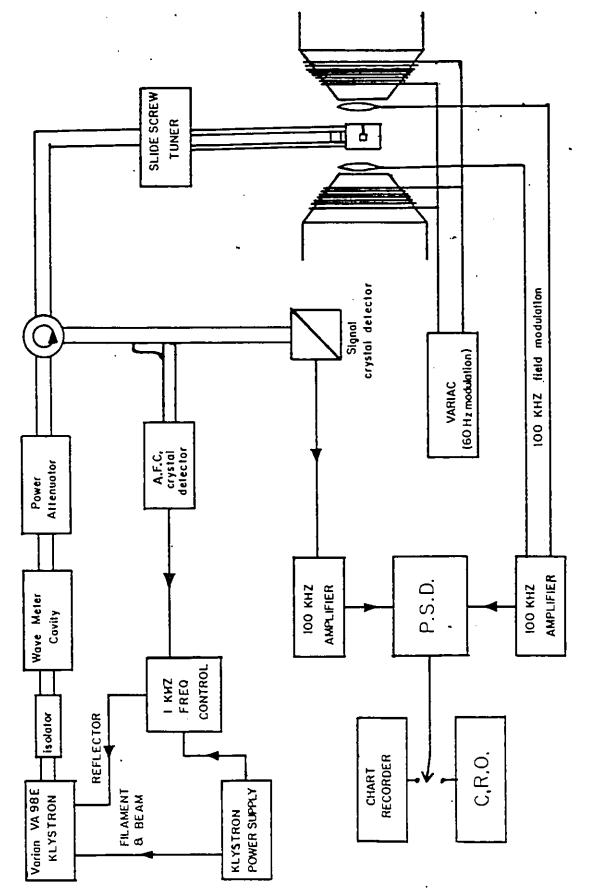


FIG IV.I

of the cavity; thus stabilizing the klystron on the resonant frequency of the cavity.

(2) Microwave Circuit

Microwaves are prevented from re-entering the klystron by use of an isolator, which is a two terminal pair microwave ferrite device which makes use of the Faraday effect to permit transmission of microwaves in one direction and prevents their transmission in another direction. A tuneable cylindrical cavity is used as a wavemeter, and an attenuator is used to control the power reaching the sample cavity which may be necessary in cases of saturation.

A three port circulator is used to allow transmission of klystron power to the cavity and power reflected at resonance from the cavity to the detector, without power going directly to the detector or any reflected power returning to the klystron arm. The cavity arm can be matched to the klystron arm by means of a slide-screw tuner. Any E.P.R. absorption in the cavity then causes a mismatch, so that power is reflected from the cavity into the detector arm. In practice the cavity is slightly mismatched in order to allow sufficient power to bias the detector crystal.

Fig. IV.3 shows a diagram of the position of the diodes D_1 and D_2 in the detector waveguide and the transformer circuit. The lines show the distribution of E intensity and it can be seen that E_1 and E_2 are in antiphase so that the signals from

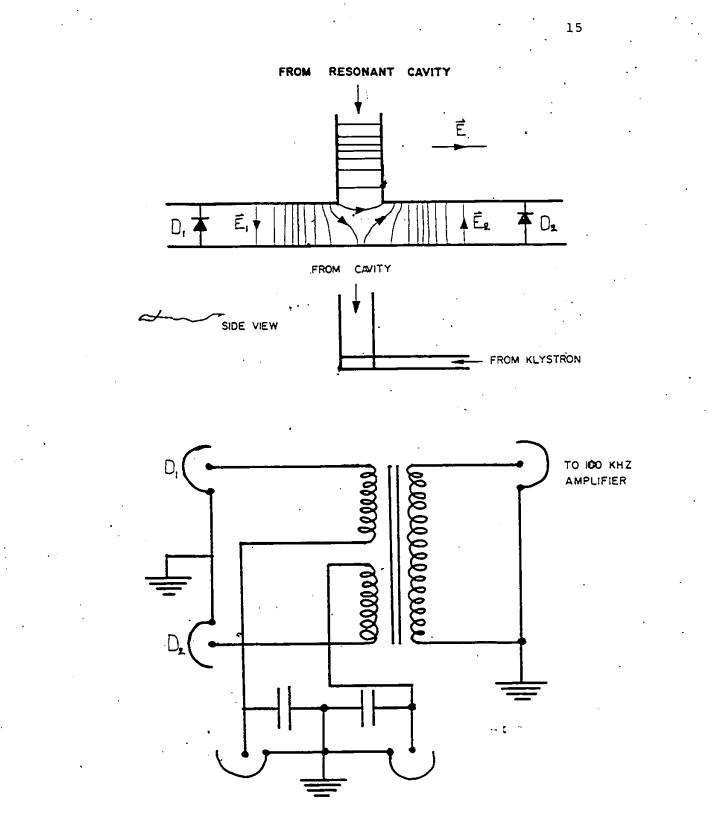


FIG IV.3

 D_1 and D_2 are also in antiphase. D_1 and D_2 transmit the signal to the 100 KHz amplitier through a transformer with two oppositely directed windings and since noise at D_1 and D_2 is random it will tend to cancel half the time, thus resulting in reduced noise.

The resonant signal is preamplified and then fed into the Princeton Applied Research (P.A.R.) model J.B.-6 lock-in Amplifier, which compare the phase and frequency of the resonant signal with the original 100 KHz modulation signal in the same ' manner as the P.S.D. of the A.F.C. circuit. The result is a derivative signal proportional to the resonant signal, which can be displayed on the oscilloscope or chart recorder as a function of magnetic field. To facilitate display on the oscilloscope the magnetic field is modulated at 60 Hz with a "Variac", in addition to the 100 KHz modulation. The horizontal sweep of the oscilloscope is connected to a 60 Hz source and synchronised with the modulation using a phase shifter. The method of oscilloscope display allows one to observe E.P.R. signals as both the magnetic field and crystal orientation are varied.

This provides a convenient and rapid means of studying angular variations.

The cylindrical cavity used was made of glass with an internal surface sputtered with gold. Operating in the TEOll mode the cavity has been employed successfully in this laboratory on previous . occasions. In conjunction with the cavity is a rotating mechanism previously developed in this laboratory⁶. It facilitates rotation about a horizontal axis which combined with rotation of the magnet about the vertical axis allows an orbitrary orientation of magnetic field.

(3) External Magnetic Field and Modulation

The external magnetic field is produced by a 12 inch Varian electromagnet with a 3.5 inch gap and a rotating base. The magnet is stabilized by a Fieldial model V-FR 2503 (Varian) control unit, which keeps the field value constant to within one Gauss for several hours. It is possible to achieve a linear sweep of up to 20 KGauss.

Magnetic field modulation at 100 KHz is generated by an oscillator built into the P.A.R. lock in amplifier. This signal is amplified externally and applied to two Helmholtz coils connected in series and mounted on either side of the cavity.

B. Proton Magnetometer

Measurments of magnetic field strength are obtained by means of a proton magnetic resonance oscillator, tuning circuit and amplifier, together with a wide band amplifier and electronic counter, Hewlett-Packard No. 5253. Several complementary probes using rubber as a proton source were constructed previously in this laboratory to cover a wide frequency range and one probe proved sufficient for all measurements.

CHAPTER V

EXPERIMENTAL PROCEDURE

(1) Crystal Orientation

Because the crystals grow preferentially along the b-axis visual examination with the aid of a binocular microscope enabled mounting of the crystals within $\pm 5^{\circ}$. The crystals were attached to the quartz capillaries with epoxy resin and this facilitated placing a thermocouple (copper-constantan) in the capillary in good thermal contact with the crystal for studies of the temperature dependence of the spectra.

Using the orientation of the magnetic field about a vertical axis and the crystal about a horizontal axis with orbitrary zero . the orientations of the magnetic field relative to the crystal were plotted on a stereogram. The accuracy of orientation was checked by recording spectra on a chart recorder at a point where the spectra coincided and then recording the spectra for the magnetic field in the reverse direction; for perfect alignment the spectra should have been identical, in practice deviations of less than $\pm 0.5^{\circ}$ were observed. Hence the size of the error bars in the following diagrams.

Diagrams of the spectra in the three crystallographic direc-.tions are shown in figs. IV.1-3.

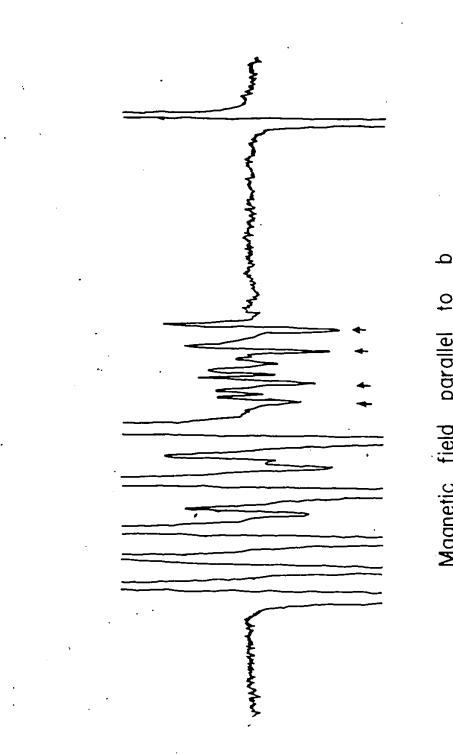
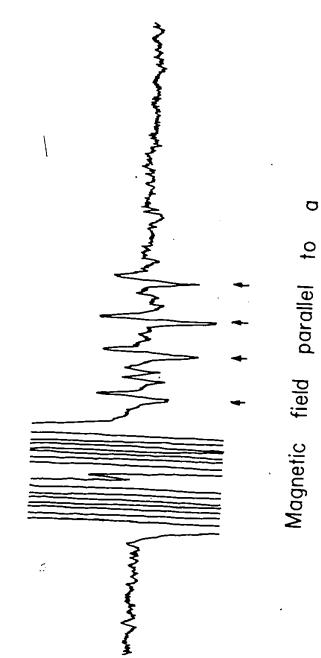



FIG 1

0 Magnetic field parallel

0

 \sim

FIG

σ

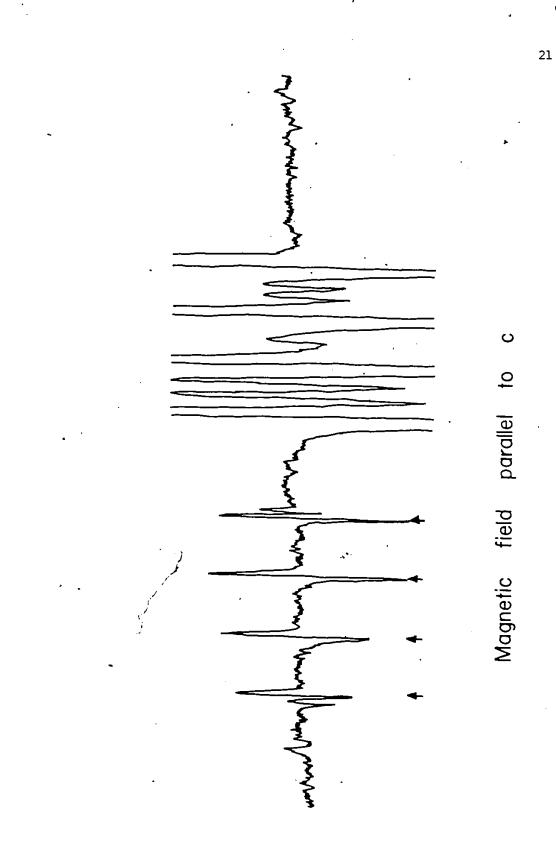
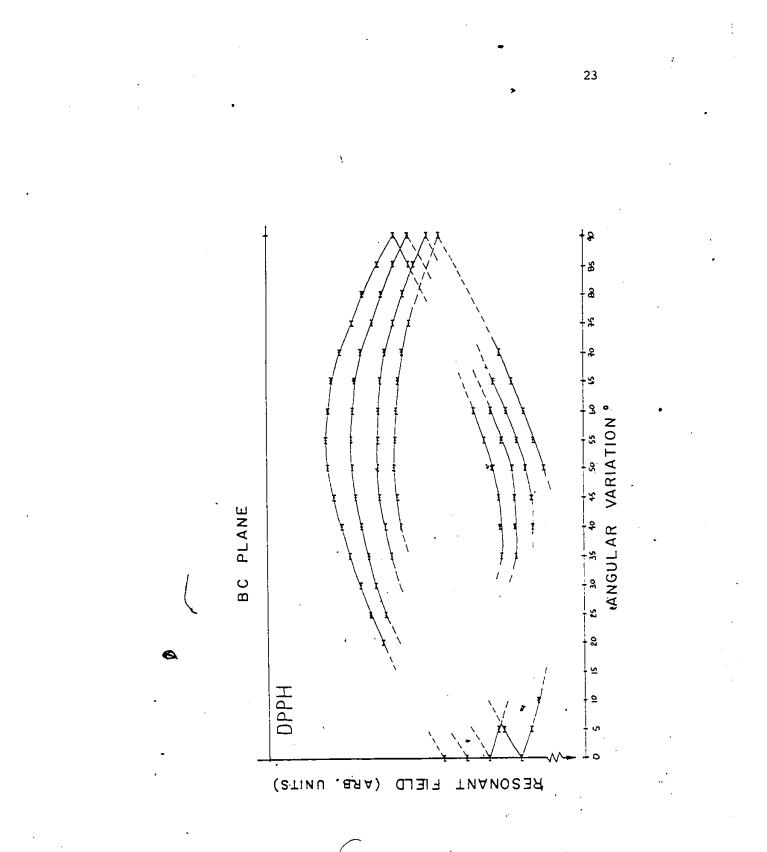


FIG IV.3

ļ

The spectra displayed three mutually orthogonal axes coincident with the crystallographic axes at which the three sets of strong lines coincided to form a single set of four lines.

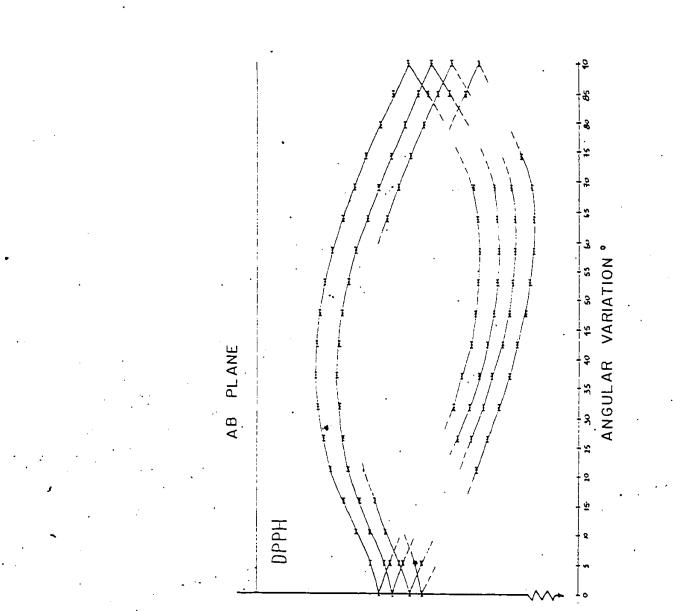
In the planes defined by these axes each set of four lines splits up into two sets of four lines consistent with the unit sell of Z=4 with four sets of crystallographically inequivalent centres for an arbitrary orientation of magnetic field. * -

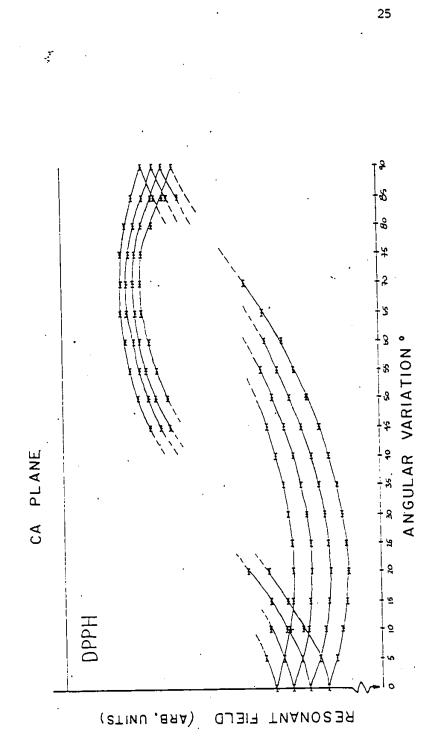

The angular variation of the set of weak lines is shown in figs. IV 4-6 in the ab, bc, ca planes, the gaps occur where the variation was obscured by the set of strong lines.

The orientation of the crystallographic axes was confirmed by x-ray analysis (see appendix 2).

Measurements were taken with a crystal doped with a single isotope Cu⁶³ and measurements of resonant fields were recorded for 38 orientations, and the directions of magnetic field for a right-handed system of co-ordinates were calculated directly from a plot of all 38 orientations on a stereogram. This allowed for convenient elimination of systematic errors and corrections for misalignment mentioned earlier.

The measurements were taken at orientations a few degrees apart wherever all four lines were not obscured by the stronger ones.


For a batch of crystals grown with Cu^{63} ions, many crystals turned out to be twinned, resulting in a complicated addition of spectra and were of no use for this work.


/ .

· · ·

I

RESONANT FIELD (ARB. UNITS)

λ.

Ľ

To check that the spectra were in fact due to twinning one crystal was removed from the spectrometer and carefully sliced into two and one half discarded. The spectrum resulting from half the original crystal showed a change of relative intensity of the extra lines with respect to the known set thus confirming their origin as a twinned region of crystal.

The results are tabulated in appendix 1.

(3) Measurement of Magnetic Field

A set of probes covering the frequency range 30 MHz to 53 MHz had previously been constructed in this laboratory and a single probe proved sufficient for all of our measurements.

A satisfactory signal intensity was achieved by using a grounded brass tube shielding two stiff wires which carried current to the inductor and which were separated from each other and the shielding by spacers set at intervals along the tube (see fig. V.7).

Actual measurements were made using a double-beam oscilloscope. The crystal rotator and magnet scale were set at the required orientation. Each E.P.R. line in turn was centred on one of the oscilloscope beams, using the second beam the P.M.R. line was tuned to the E.P.R. line. The frequency of oscillation of the P.M.R. signal was then read from the digital output of the electronic counter. This can be converted to a magnetic field strength using the relation

$$h \vartheta = g_{\rho} \beta_{N}^{H}$$

$$H = \frac{h}{g_{\rho} \beta_{N}} \cdot \vartheta$$

or H(KGauss) = 0.234869 \vartheta(MHZ)

••••••

signal C.R.O. display of P.M.R.

∞

FIG <u>V</u>

where;

- H is magnetic field strength
- h is Planck's constant

g, is the proton g-value

 $\beta_{\rm r}$ is the nuclear magneton

 ϑ is the frequency of oscillation

Typical C.R.O. display is shown in fig V.8.

Since the 60 Hz modulation was only 20 Gauss the error in reading C.R.O. scale could not have exceeded 2 Gauss and was thus of no concern as a major source of error.

(4) Measurement of Microwave Frequency

A small amount of the free radical D.P.P.H. (diphenyl picryl hydrazyl) was attached to the sample with glycerine and acted as a marker to measure the microwave frequency using the relation

 $h \partial = g_{DPPH} H_{DPPH}$ $\partial = g_{D} \beta . H_{D}$

where;

 ∂ = microwave frequency g_D = D.P.P.H. g value = 2.0036 H_D = field value at D.P.P.H. resonance. The D.P.P.H. E.P.R. line is extremely exchange narrowed and gives a very parrow temperature independent line.

میر در در میراند. مسالحد ا

CHAPTER VI

DEVELOPMENT OF COMPUTER PROGRAM FOR FITTING OF DATA

A. The method

A method of parameter fitting using multi-dimensional Newton-Raphson Least-Squares minimization developed by Dr. W. E. Baylis was used so that the program could be generalized. This enabled it to accept data at any orientation and to fit a curve using data from different orientations rather than different frequencies.

The one dimensional Newton-Raphson Method⁷ is obtained analytically from the following condition on the Taylor series expansion

$$f(\chi_n+h) = f(\chi_n) + h \cdot f^{I}(\chi_n) + \frac{h^2}{2!}f^{II}(\chi_n) + \dots = 0$$

Where χ_n is an approximation of the root of the equation. This can be written in partial derivative form as

$$\frac{\partial}{\partial \chi_n} f(\chi_n + h) = \frac{\partial}{\partial \chi_n} f(\chi_n) + h \cdot \frac{\partial}{\partial \chi_n} f^{L}(\chi_n) + \dots = 0$$

The problem of fitting the experimental data can be overcome in the following way. The Hamiltonian can be expressed as a function of a number of fitting parameters $p_i (i = 1, 2... I_{max})_1$ the experimentally measured magnetic field values B_1 and other experimental parameters necessary such as orientation K or temperature T. B is a function of orientation so that the resonant fields occur as (N-1) values for each of M orientations.

29.

where N will represent the degeneracy of the ground state. So the Hamiltonian can be expressed as

 $H = H(P_1, P_2, \dots, P_{I_{max}}, \vec{B}, \vec{K}, T, \dots) \qquad VI.1$

The Hamiltonian is represented in an n-dimensional basis

. The matrix elements for the Hamiltonian and its first and second derivatives with respect to the parameters must be known or able to be calculated.

<d b="" h="" =""> .</d>		VI.2
<a (dh="" dpil3="" ="">	•	VI.3
< 32/H/JpiJpj/B		VI.4

The matrix elements of VI.2 and VI.3 for our Hamiltonian are easily calculated knowing the matrix elements of $\mathbf{I} = 3/2$ and $\mathbf{S} = 1/2$ within the manifold of $\{|\mathbf{S}\rangle \otimes |\mathbf{I}\rangle\}$. As the parameters occur linearly in the Hamiltonian with no cross products the elements of VI.4 will be zero.

For each set of external parameters (B,K,T,...), (in this case for M(N-1) resonant field values), the Hamiltonian is diagonalized using the subroutine is basically an extension of the Jacobi method to Hermitean matrices ^{8,9} and is double precision, complex.

A new set of basis vectors $\{\{i\}\}, (in \text{ terms of the original set } \{|\alpha\rangle\}, (i) = \sum_{\alpha} |\alpha\rangle\langle\langle\langle|i\rangle\rangle$ is then obtained in which the Hamil-tonian is diagonal

 $\langle i|H|j \rangle = E_i \delta_{ij}$

The difference between one adjacent pair of eigenenergies $(E_{k_1} - E_{k_2})$ will correspond to the transition energy experimentally

VI.5

determined from measurement of the microwave frequency ϑ_k . The correspondence between the pair of eigenenergies chosen and the resonant field representing that transition must be known. this case the correspondence was determined and the programming simplified by taking all measurements at orientations above the resonant lines were clear bobserved.

31

VI.6

VI.7

VI.8 🛶

A least squares sum is formed from:

 $f = \{ (E_{k_1} - E_{k_2}) - \partial_k \}^2$ = $\{ (E_{k_1} - E_{k_2}) - \frac{g_D^H }{G_R} \}^2$

where the transition energy in vy.7 is expressed in units of Gauss and is determined from the resonant field of $\mathtt{DPPH}(\mathtt{H}_{D})$. The value of the least squares sum f is then determined by summing over the total number of transitions measured (N-1)M and dividing by the number of degrees of freedom (N free = number of transitions - number of parameters).

The multi dimensional Newton-Raphson method finds the value of P = (p₁, p₂,..., pi), representing a rector in i-dimensional space where i is the number of parameters, such that $\frac{\partial f}{\partial p} = 0$. by solving iteratively the equation for the displacement

$$\frac{\partial}{\partial P_{i}} f(p + \hat{s}) \approx \frac{\partial}{\partial P_{i}} f(p) + \frac{\partial}{\partial P_{i}} \frac{\partial^{2}}{\partial P_{j}} f(p) \hat{s}_{j} = 0$$

the solution is:

$$\delta_{i} = -\sum_{j} M_{ij} \frac{\partial}{\partial P_{j}} f(p)$$

where (M_{ij}) is the inverse of $(\frac{\lambda^2}{\partial P_i \partial P_j} f(p))$

and

The inversion is carried out by the subroutine DMINV (see appendix 5). The value of Si is then added to pi to give the new estimate of the parameter.

The first and second derivatives of the least squares sum f required in the calculation are determined using perturbation theory.

$$\frac{\partial f}{\partial P_{i}} = \frac{\partial}{\partial P_{i}} \frac{\sum_{k} \left\{ \left(E_{k_{1}} - E_{k_{1}} \right) - \frac{g_{D}}{2} - \frac{g_{D}}{2} \right\}^{H}}{Nffee} \right\}$$

$$= 2\sum_{k} \left(\frac{\partial E_{k_{1}}}{\partial P_{i}} - \frac{\partial E_{k_{2}}}{\partial P_{i}} \right) \frac{\left\{ \left(E_{k_{1}} - E_{k_{2}} \right) - \frac{g_{D}}{2} - \frac{g_{D}}{2} - \frac{g_{D}}{2} - \frac{g_{D}}{2} \right\}}{Nfree} VI.9$$

and

$$\frac{\partial^{2} f}{\partial p_{i} \partial p_{j}} = 2 \sum_{k} \left(\frac{\partial^{E} k_{1}}{\partial p_{i}} - \frac{\partial^{E} k_{2}}{\partial p_{i}} \right) \left(\frac{\partial^{E} k_{1}}{\partial p_{j}} - \frac{\partial^{E} k_{2}}{\partial p_{j}} \right) \left(\frac{\partial^{E} k_{1}}{\partial p_{j}} - \frac{\partial^{E} k_{2}}{\partial p_{j}} \right) - \left(\frac{\partial^{E} k_{1}}{\partial p_{i} \partial p_{j}} - \frac{\partial^{E} k_{2}}{\partial p_{i} \partial p_{j}} \right) \frac{\left\{ E_{k_{1}} - E_{k_{2}} - \frac{g_{D}^{H_{D}}}{g_{s}} \right\}}{N \text{ free}} \right\} VI.10$$

where

$$\frac{\partial E_{k}}{\partial P_{i}} = \lim_{\substack{s \to 0 \\ i \to 0}} \left\{ \frac{E_{k}(p_{i} + \hat{s}_{i}) - E_{k}(p_{i})}{\hat{s}_{i}} \right\}$$

Where \hat{i} is a unit rector in i - dimensional parameter space and where $E_k(p + \hat{j}_i \hat{i})$ is the eigenenergy corresponding to $E_k(p)$ of the Hamiltonian $H(p + \hat{j}_i \hat{j})$, to first order in $\hat{\delta}_i$ $H(p + \hat{j}_i \hat{j}) \approx H(p) + \frac{\partial H(p) \hat{\delta}_i}{\partial P_i}$ Using perturbation theory the eigenenergy can also be expressed to first order in \boldsymbol{S}_{i}

$$E_{k} (\underline{p} + \delta_{\underline{i}} \underline{\hat{i}}) = E_{k} (\underline{p}) + \langle K | \frac{\partial H}{\partial P_{\underline{i}}} | K \rangle \delta_{\underline{i}}$$

and consequently

$$\frac{\partial E_k}{\partial P_i} = \langle k | \frac{\partial H}{\partial P_i} k \rangle$$
 IV.11

similarly

$$\frac{\partial^{2} E}{\partial p_{i} \partial p_{j}} = \lim_{\substack{\xi_{i} \in \xi_{j} \to 0 \\ \xi_{i} \in \xi_{j} \to 0 \\ \text{Now to second order in } \xi's}} \underbrace{E(\underline{p} + \xi_{i} \cdot \hat{\underline{j}} + \xi_{j} \cdot \hat{\underline{j}}) - E(\underline{p} + \xi_{i} \cdot \hat{\underline{j}}) - E(\underline{p} + \xi_{j} \cdot \hat{\underline{j}}) + E(\underline{p})}_{\xi_{i} \in \xi_{j}}$$
Now to second order in $\xi's$

$$H(\underline{p} = \xi_{i} \cdot \hat{\underline{j}} + \xi_{j} \cdot \hat{\underline{j}}) = H(\underline{p}) + \frac{\partial}{\partial H} \cdot \xi_{i} + \frac{\partial^{2} H}{\partial p_{i} \partial p_{j}} \cdot \xi_{i} \cdot \xi_{j}$$

$$+ \frac{\partial}{\partial p_{j}} + \frac{\delta}{2} + \frac{\delta}{2} \cdot \frac{\delta}{\partial p_{j}^{2}} + \frac{\delta^{2} H}{\partial p_{j}^{2}} \cdot \frac{\delta}{\partial p_{j}^{2}} \cdot \frac{\delta}{\delta} \cdot$$

where V may be considered a small perturbation. As the parameters appear linearly in the Hamiltonian the last item goes to zero. By second order perturbation, the eigenenergies are shifted to

$$E(p = S_{i}\hat{i} + S_{j}\hat{j}) = E(p) + \langle \kappa | \nu | \kappa \rangle + \sum_{i \neq \kappa} \langle \kappa | \nu | i \rangle \langle 1 | \nu | \kappa \rangle$$

$$I \neq \kappa \qquad E_{k} = E_{1}$$

Thus

$$\frac{\partial^2 E}{\partial p_i \partial p_j} = \langle k | \frac{\partial^2 H | k}{\partial p_i \partial p_j} + 2 \Re e \sum \langle k | \frac{\partial H}{\partial p_i} | 1 \times 1 | \frac{\partial H}{\partial h} | k \rangle$$

$$\frac{\partial^2 E}{\partial p_i \partial p_j} = \frac{1}{1 + k} \frac{\partial p_i}{E_k - E_1}$$

where the matrix elements $\langle k | M | l \rangle$ written in terms of the old basis are

 $\langle k|M|1 \rangle = \sum_{d|\beta} \langle k|d \rangle \langle d|M|\beta \rangle \langle \beta|1 \rangle$

The similarity transformation is carried out by the subroutine STCM (see appendix 5)

Probable errors are calculated as follows, since f may have a probable error given by $\Delta f \approx f/N_{free}$ the corresponding \mathbf{T}_{i} in pi is given by

 $\Delta f = \frac{1}{2} \sum_{ij} Mij \sigma i \sigma_j = f/N_{free}$

The values of $\overline{\nabla_i}^2$ are calculated from inversion of the above giving,

B. The flow chart

From the flow chart (see fig. VI.1) the steps in the computational process can be followed.

- The data is read in including all external paramenters, initial estimates of the crystal parameters and the matrix elements of operators required in the equivalent Hamiltonian. The input data after conversion is printed out.
- The matrix elements that are independent of the field are calculated.
- 3. The remaining field dependent matrix elements are calculated using the components of the measured field values in addition to data utilised in 2. (see appendix $\boldsymbol{6}$ for RTN1)

VI.12

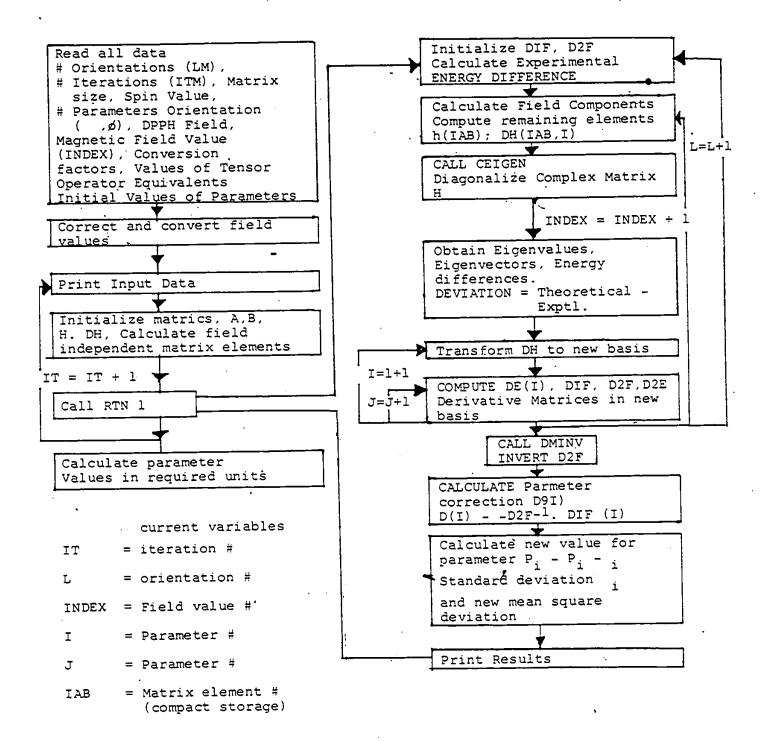


Fig. VI.1. FLOW CHART FOR COMPUTER PROGRAMME

- 4. The Hamiltonian matrix form in 2 and 3 is then diagonalized exactly using the subroutine CEIGEN (see appendix 7) which returns eigenenergies and eigenvectors. The difference between the adjacent eigenvalues provides the basis of the least squares sum while the eigenvectors are used in the similarity transformation in the next step. The value of DEVIATION printed out is a measure of the fit.
- 5. The derivative matrix is then transformed to the new basis in which the Hamiltonian is diagonal, see (VI.12). This then allows calculation of DE(I), the derivative of the energy with respect to each parameter, see (VI.11). From these the first and second derivatives of the least squares fit are formed, DIF(I), see VI.9, and D2F(I), see VI.10.

Step 5 is repeated for each parameter in the I = I + lloop, while the computation of the second derivative is repeated for all parameters J, with each parameter I in the J = J + l loop.

Steps 3 - 5 are then repeated for each of the (N - 1)resonant fields at a given orientation during the INDEX = INDEX + 1 loop, which itself is repeated for all of the orientations in the L = L + 1 loop.

6. As D2F involves summation of both I & J simultaneously as well as a summation over all of the resonant fields, it is not completed until the end of step 5. D2F is then inverted using DMINV (see appendix 7). The parameter connection D(I) can then be calculated see VI.8, the new estimate of the parameters is then determined P(I) = P(I) + D(I)

The standard deviation for each parameter is then calculated together with an estimate of what the mean "square deviation will be, using the new parameter values. 7. The results are printed and control returned to the main program where steps 2 to 7 are repeated for the number of iterations specified.

 The parameters are converted to whatever units are required and any auxiliary calculations with the parameters may also be carried out here.

As a check on the inversion process and the reliability of the parameter values, the D2F and $(D2F)^7$ matrices are multiplied using the subroutine DGMPRO (see appendix 8), based on IBM routine GMPROD)¹⁰ to see that the product is the unit matrix. (see VI.8)

C. Rate of Convergence

To indicate the rate of convergence a sample run is shown in table VI.l giving the mean square deviation in KGauss.

Mean Square Deviation (KGauss) ²
0.9190
0.0220
0.0550
0.0022
. 0.0200
0.0006
-

TABLE VI.1

Even though the values oscillates it can be seen that

convergence is quite rapid.

....

•

.

.

•

.

ł

•

•

.

CHAPTER VII

DISCUSSION AND CONCLUSION

In total thirty eight orientations were used to collect data: with orientations in all three planes included. For the fitting of parameters in the spin Hamiltonian nineteen were rejected because they gave for larger deviations from the trial energy levels than the remaining twenty nine. In excess of a dozen iterations were needed before an acceptable fit was obtained and from then on the quality deteriorated.

The best fit parameters are tabulated in table VII.1. The results are presented in the co-ordinate system discussed previously.

These results will be discussed in the light of previous reports, Abdulsabirov¹ had investigated the three strong sets of lines and had fitted data to an orthothom bic spin Hamiltonian,

 $H = \vec{H} \cdot \vec{g} \cdot \vec{S} + \vec{S} \cdot \vec{A} \cdot \vec{I}$

in which the g and A "tensor" shared common principal axes. They found that the orientations of these three sets axes were completely different and correlated these orientations with the crystallography with the help of X-ray analysis.

TABLE VII.1	TABLE	E VI	I.	1
-------------	-------	------	----	---

<u>q values</u>		
gxx	gyy .	gzz
2.5396 <u>+</u> .0001	2.1296 + .0002	2.0920 ± .0001
gxy	gzx	gzy
0.1023 <u>+</u> .0001	0.0347 <u>+</u> .0001	0.0516 <u>+</u> .0002

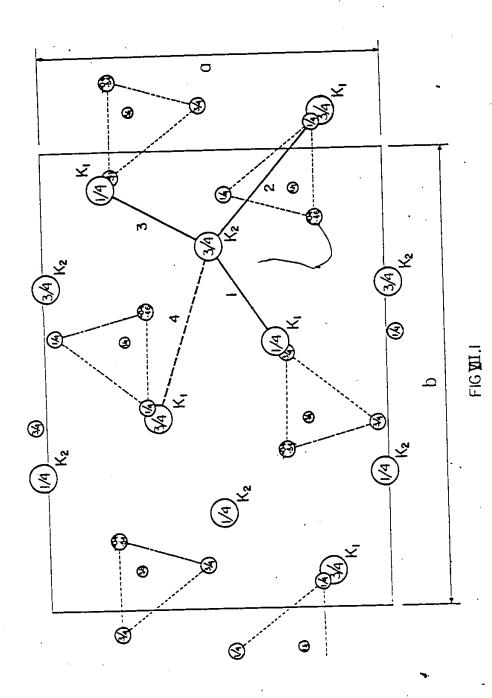
A values $(x10^{-4} \text{ cm}^{-1})$

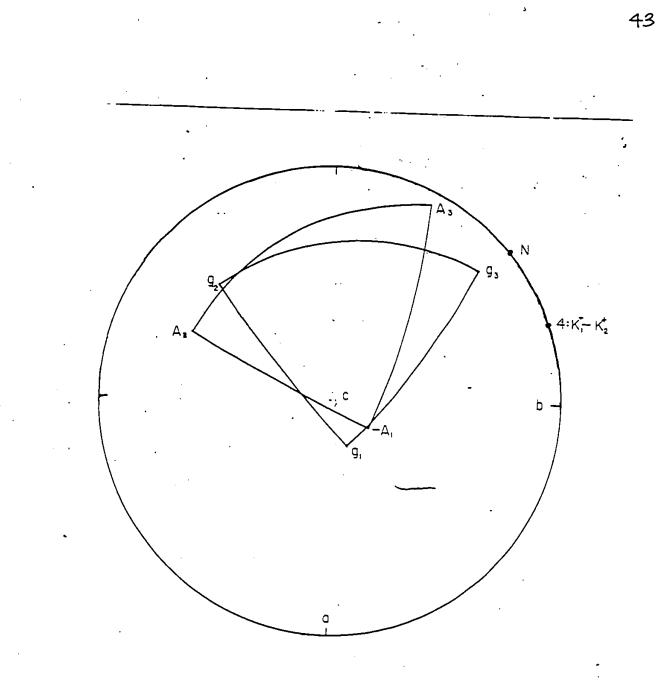
AxxAyyAzz 205.3 ± 0.9 19.9 ± 5.6 38.5 ± 4.0 AxyAzxAzy88.3 \pm 2.0 2.3 ± 1.6 -36.9 ± 4.5

Q values (x10⁻⁴ cm⁻¹) Qx

20.6 + 2.0

N.B.: Above expressed in crystallographic coordinate system described earlier.


Qy


3.8.+ 0.6

Since Cu^{2+} is doubly charged, it substitutes for K^{1+} in the lattic of K_2SO_4 overall electrical neutrality can only be perserved if some kind of charge compensation occurs. Abdulsabirov¹ proposed that this compensation occurs via a vacancy on an adjacent K^{1+} site. A diagram of the crystal structure of K_2SO_4 projected along the c-axis is shown in fig. VII.1. The K_1 and K_2 sites differ in environment but the four of which occur in each

unit cell are related by the symmetry of the crystal. If the Cu^{2+} impority substitutes for a K^{1+} as proposed by Abdulsabirov¹ then a vacancy on an adjacent K^{1+} site will strongly influence the g tensor and will rotate on principal axis towards the direction joining the Cu²⁺ impority and the vacancy. Abdulsabirov¹ found that the above is consistent with Cu^{2+} substituting for K^{1+} on a K_2 type site with a vacancy on an adjacent K_1 type site. They found that the principal axis of the g tensor (ie. largest principal value) for the three centre types was within a few degrees of the line joining the K_1 and K_2 type positions. These $K_2^+ - K_1^+$ directions are marked 1,2,3 on fig. VII.1. They also mention the fourth weak set of lines investigated here and suggest that they may be due to a centre produced when charge compensation occurs on the fourth adjacent K_1^+ site. The line joining K_2^+ to this fourth adjacent site drawn and labelled 4 in fig. VII.1. The directions of the principal values of the g tensor observed by Abdulsabirov¹ are inconsistent with Cu^{2+} substituting on a K_1 type site and charge compensation occuring on a K_2 type site as can easily be verified. Why substitution should occur on K_2 and not K_1 type sites is not known but it can be noted that K_1 type sites have an oxygen much closer than K_2 type sites.

Our results are in fair agreement with the above as follows. The fitted parameters in table VII.1 indicate that the g "tensor" can be adequately fitted by a symmetric tensor and the A "tensor" not so adequately although as can be seen any observed asymmetry in A is slight.

ł

Stereogram of principal axes of g and A tensors with respect to crystallographic axes ,

FIG VII.2

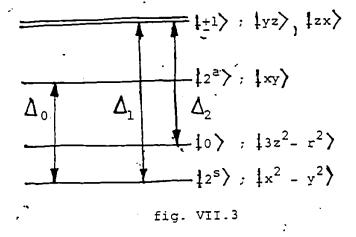
It is generally agreed that g is symmetric in the absence of an external electric field. If we assume that the g and A "tensor" can be adequately fitted by symmetric sets of parameters then g and A can be diagonalized (see appendix 10 for method) to yield the principal axes. These are shown on a stereogram in fig. VII.2 and the principal values tabulated in table VII.2 below. On the stereogram the principal directions of the g and A "tensors," are displayed as points joined by lines of 90° . The stereographic axes are those of the crystal and the line labelled 4 in fig. VII.1 is shown in the ab plane.

TABLE VII.2

			•		•	
gl	2.122			Al	55.3	
g ₂	2.052			^A 2	-32.9) •_
a3	2.407	•			241.3	
				($\times 10^{-4}$	cm ⁻

As pointed out by Abragam and Bleaney¹¹ g and A are not time second rank tensors, rather gg and AA, however since we are taking both g and A to be symmetric diagonalizaing g necessarily diagonalizes gg etc., and so the principal axes and values are unchanged.

As can be seen from the stereogram clear non coincedences in g and A principal axes are observed particularly for g_3 and A_3 . Fair corroboration of Abdulsavirov¹ can be seen with an angle of 22[°] between direction $K_2^+ - K_1^+ : 4$ and g_3 . Even more significant is the fact that g_3 is within 9[°] of the nor-,


1,

mal to the rectangle formed by the remaining K_1 ligands nearest the vacancy. This is labelled N on the stereogram.

Freeman and Dilbrow² have also investigated $K_2SO_4:Cu^{2+}$ and isostructural $Rb_2SO_4:Cu^{2+}$ and have reported not only noncoincidences in g and A principal axes of 8[°] but also asymmetrics in A. They also cite five other recently reported cases of low symmetry. They only concentrated on centre type 1 as defined by Abdulsabirov¹ (direction 1 and fig. VII.1) and omitted a quadrupole term. However for our set of weak lines $M_I = +1$ transitions varies greatly with direction.

Non-coincidence of g and A tensor is allowed whenever the point symmetry at a paramagnetic ion is monoclinic or triclinic but not for higher symmetrics. As fig. VII.2 shows we are clearly dealing here with a case of triclinic symmetry, since non-coincidences in excess of 12° for all axes are clearly demonstrated and there is no common principal axis which would result from monoclinic (C₂) or higher symmetry¹².

As discussed by Belford et al¹², for such low symmetry the A tensor need not be symmetric but the limitation with orientation dependent measurements on single crystals is that A_X , A_Y and A_Z (XYZ being the principal axis system of the A tensor) along with two Euler angles parameterizing the disposition of gg and AA can be measured, but A has nine independent components so that A cannot be completely characterized. In practical terms this means that even if A is genuinely asymmetric it may not be possible to detect asymmetrics. On a molecular level the problem of the ground state may be very crudely approached by 1st order perturbation theory. It can be shown that a cubic environment with a tetragorial elorigation produces the energy level scheme shown below in fig. VII.3.

Spin orbit coupling cannot mix $|3z^2 - r^2\rangle$ and $|x^2 - y^2\rangle$ but mixes in some of the $|zx\rangle$ and $|xy\rangle$ to give an axial g tensor

 $g_{11} = 2 - \frac{8\lambda}{\Delta_0}$ $g_1 = 2 - \frac{2\lambda}{\Delta_0}$

This is in contrast to a $|3z^2 - y^2\rangle$ ground state which

$$g_{11} = 2$$
$$g_{1} = 2 - \frac{6\lambda}{\lambda_{2}}$$

gives

This shows that we are dealing with a predominantly squareplanor ground state ie. $\frac{1}{x^2} - \frac{y^2}{z}$ in the plane formed by the four coordinating K₁+ sites with the normal N.A low symmetry crystal field however may mix $\frac{1}{x^2} - \frac{y^2}{z}$ with $\frac{1}{3z^2} - \frac{r^2}{z}$ and the g values observed can be fitted to a 1st order pertorbation expression to give a ground state.

$$|g\rangle = \alpha (|x^2 - y^2\rangle + \beta |3z^2 - r^2\rangle)$$

with $\beta = 0.065$

In other words the effect of the vacancy is to mix in $\frac{1}{3}z^2$ r² with z pointing towards the vacancy.

Presumably this centre occurs less frequently for emergetic reasons and since the signal is proportional to the concentration of paramagnetic centres this allows a rought estimate of the relative occurence of the different centre types. This yields an occurence rate 0.3% that of the other centres which ^{CP} have signals of roughly equal strength.

At any rate the concluding remarks to be made from this investigation are to tentatively confirm the hypothesis of Abdulsabirov¹ and to report a case of Cu^{2+} occupying a low symmetry site resulting in non-coincidences in excess of 12° in qq and AA principal axes.

BIBLIOGRAPHY

1. Abdulsabirov, R.Y., Greznev, Yu. S. and Zoripov, M.M., Soviet Physics - solid State, Vol. 12. No. 2 Aug. 1970.

2. Freeman, T.E. and Pilbrow, J.R., J. Sphy-C: Solid State Vol. 7, 1974.

3. Robinson, F.M.T., J. Phys, Che., 62, 925-928.

4. Zaroyskiy, Ye.K.Zh., EKsp. Teor. Fiz 17, 155, 1947.

5. Griffith, J.S., "The Theory of Transition Metal Ions," Cambridge Univ. Press, 1961.

6. Holuj, F., Can. J. Phys. <u>46</u>, 287 1968.

7. Froberg, C.E., "Introduction to Numerical Analysis", Addison-Wesley.

8. Ibid., p 111. 🚙

9. I.B.M. publication 360A-CM, p 165.

10. Ibid., p 95.

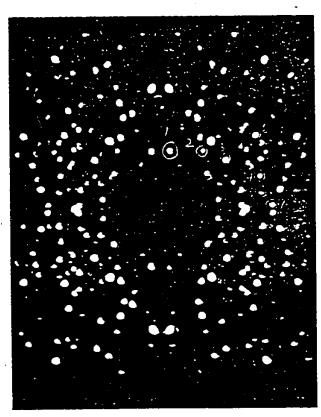
11. Abragam, A. and Bleaney, B., "Electron Paramagnetic. Resonance of Transition Ions", Oxford: Clarendon, 1970.

12. Belford, R.L. and Pilbrow, J.R., J. of Mag Res 11, 381-387, 1973.

RESULTS

A right-handed coordinate system was chosen which coincided with the crystallographic axes for tabultation of results and input into the parameter fitting program. Polar coordinates were employed and the correspondence is shown below:

azimutal angle
 polar angle


÷

ϕ_{\circ}	crystallographic axis
00 00	b
0° 90°	c
90 ⁰ 90 ⁰	a

Computer printout of results is shown overleaf and the format is as follows columns 1-4: ϕ columns 5-8: θ columns 9-14: ω_{DPPH} MHZ columns 15-20: transition IF = 1 to JF = 8 MHZ columns 21-26: transition IF = 2 to JF = 7 MHZ columns 27-32: transition IF = 3 to JF = 6 MHZ columns 33-38: transition IF = 4 to JF = 5 MHZ

.نە *	C 82/04/37 5 0.00 JUED BUT UP 5	120.00 ALLOCATIO *
* * * * * * * *	U DATCH JUBS AND	C CLASS H.H JLUS RUN * 50.
		· ·
د رد.	LIST XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
	00000941501223079505664210276624288694 0000095794410074696278591037546283547 00000941501223679254935632147756023537	
-	000003773332(115+4) 7039715436-2773243 000039733219774149123397709123874740825 00000252913963 75411(00209556149(07502	
	00001++55542()1062779580)1704357725335 0000247385542103689795204157326557254 00001553366755422195336524475320154663	
. .	0000204352012257899530215408532778505 00001596362012025048769532105478523662	· · · · · · · · · · · · · · · · · · ·
	0900402352105753538201274222147699530 09001394351355457312696502143562753314 09000359352103547940244510366785436652	
	0900297379553115464373215438907234517 090015035301266875421069578204617533224 04970900321054367932015466672214987063	
· •	13030900342103769235301455075586149052 044609003421203665912735664000235817334 13540400354754201255574215363002205765	
	01500(10353210407305044215750022100752 101409(0352107404400427530102702477364 015509(0362104786500170270439102571903	
	16440700352105687751643296510495727522 01250900352105665475215345667532532	······································
	10750900334555940700532634963735286541 0075090035521036599337020142588679532401 17250900325921036599337020142588679532401	• - •
	- 302539,03+23155+0703235+0323701353120 - 177502,033521037903+0321534755443253031 - 00330903201545036270+39733002154753654	
•	030037473522016897524451036385792411253 00001057352445879011235740213699575224 00000755385542130639527413585806574158	
11		- · · - ·
	• ···	
		· · · · · · · ·
. .		• • •
		•
		A
•	· · · · · · · · · · · · · · · · · · ·	
. . .		
. .		
•	•	
		· · · · · · · · · · · · · · · · · · ·
	·	
	X -	

IDENTIFICATION OF CRYSTALLOGRAPHIC AXES X-ray measurements were performed by Dr. M. Khan with the aid of his four circle diffractometer euabling identification of crystallographic axes. The diffractometer used the Syntex system. A photograph of forward scattening spots produced by the sample crystal is shown below.

,3

	•		APP	ENDIX	<u></u> ,3						P .
IV G LEVEL	21		- NA	Í N		DATE =	81181	. 1	7/50/0	1.	-
c Š				•			•			НАМЕ НАМЕ	40 130
	(MPLICIT CMPLEX# CA(36),	16 DCON	JG.DH(30	Z) E\$14},DH	IT (.36 . 14	.),EVECT	(64).HC	36),IM4	G.ZERC	HAME	140
C 1	THENSIC	N A(6) 0),BETA	(50),D(14), SIC	GMA(14)	.HO(50)	.D2FINV(.IF(11).				
0	DATA CI.	C2/ GAU	SS'.'10	-4CM-1 *	+ IMAG/	0.D0.1.	DO)/.ZEP	0/(0.D0.	.0.00)/	HA4F HAME	160
			GRMAT S	TATEMEN	rs.					HAME	210 220
. 101 F	- OFMAT (2 - ORMAT (2 - CFMAT (1	F5.1.3F	10.7.2F					• .		HAME	•
103 F	FORMAT(8	F10.5)							•	HAMÉ	250
10E- F 1C7 F	ECRMAT (ECRMAT (8F10.7) 3F10.7)				•					
110 F	FCRMAT (FCRMAT(4 FCRMAT(1	(8F10.6		.6/.2(5)	=10.6/)	,2F10.6)				HAMF	-
C C C C		OUTPUT	FORMAT	STATEME	NTS					HAME HAME HAME	300
- 150 8	FCRMAT(1	H1.//25	X.7A8.2	A8) 5 CRIEN	TATIONS	= • . 12.5x	. NUMBER	OF ITER	RATION	HAME	
1 =	=•.12.5X	. TEMPE	RATURE (C)=1,F6	•1)		•			HAME	340
10	OF PARAM	ETERS=*	-15)			SPIN VAL	UE= • • F6 •	1.34.	UNDER	HAME	360
	FORMAT(/ FORMAT(/									HAME	
160 8	FCEMAT(/ FORMAT(/	1X. PHI	: • • 2X	.12(F7.	1,2X))				,	HAME	
164 8	FCRMAT(10X-12(2X.F7.4))						HAME	410
166 8	FCRMAT(/ /,1x,*FR	V.1X.*P Bee fleo	FOTCN M	HZ TO G. VALUE≓'	AUSS='. .F8.6)	F7.3,15X	OPPH G	VALUE=	•,F8.6	HAME	420 430
168 8	FORMAT(1	H1.//50	X, ITER	ATION #	••11///		OX 1C7X1	. 97 . 167	~• 1	HAME	450
170 8	FORMAT(1	4X, *AX*	.10X, *A	Y 4 4 10X #	*AZ*+10	X, *AXY*,	9X, GZX 9X, AZX	•9X• AZ	Y!)		
171 1	FÖRMAT(1 Förmat(4 X • * Q X *	,10X, C	Y . 10X .	• 0 Z • • 1 0	X, *QXY*,	9x, 'azx'	,9X,*QZ	Y•)		
174	FORMAT	/// .Sx .	THETA=	'.F6.1.	SX. PHI	È.₽6.1.	17)			HAME	
178	FORMAT(2 FORMAT(2	0X.12.	/2 .2X.	**.2X	,12,1/2	*.10X.G1	0.3)			HA MF HA MF	510
180 1	FORMAT()	/50X.*P	REDICTE	D DISPL	ACEMENT	S*/.6X.*	D(1)*.6X 6X.*D(8)	-D(2)	,6X, 'D	(HAMF HAMF	520 530
	2)*,6X, 6X,*D(1(),*•2X*	D(11)*,	5X, D(1	2) •)	••••••••	0		(77 *		
1 82	C(18)	5X•*0(13	3)*.6X.*				D(16).6	x. • D(17)•.6X.	намғ 'Начғ	
184	FCRMAT(//50X. "N	IEW VALU	ES FOR	PARAMET	ERS!) FACH PA	RAMETER	3		HAME	560
	EDRMAT()	OX. VAL	UE OF .	12. TH	PARAMET	ER IS NO	DT CONVER	GENT!)		HAME	570
<u> </u>	FORMAT(/	GAUSS	IS DEVIA 10X."N	IUMBER D	F LINES	GAUSS'.1 =',[3)	OX NEW	KMS DEV	TATION	HAME	590
c ·		0540 1	PUT DAT							HAME	
с					-					HAME	
-	CONTINUE READ 100), L M , I T	A.TENP							HAME	
	READ 102 READ 102			IEACER.G	NAME					HAME	700 ⁻ 760
	READ 100 READ 100	S.(P(1))	I=1.6)	~ `							
•	READ 10	C, NCOR	Ξ								
	READ 10 FCRMAT(• • K = 1 • 1 1)						
	PRINT 1				•						
10	IN=0 IN=IN+1				,	_					
1 5 9	СС 199. F(к)=C.	с,									
	READ 10	20.ALPH			H0(IN)	{F(K),K	=1,10)				
1 0 3 0	FORMAT() IF(HO(I	N) .EC.D						•			
	DC 20 K										
	**=11 / N										
	· ·										

52

.

		•							53
V G	LEVEL	- 21	MAIN		DATE =	= 81181		17/50/	01
	•	JJ=JF(K) HE(IN,K)=F(K)* HDP(IN)=HC(IN) PRINT 2005.IN. FCFMAT(*0*.2X, GD TO 10	*PMHG*GDF/GFE	(IN),HO 2X,L1(2	(IN).(IF) 11.1X.F7	(K),JF(K .4))	().F(K).	,K=1.8)	
	30 C	LM=IN-1	•			•			HAME 790 HAME 300
•	u u u	•	INPUT DATA				•		HAME 810 HAME 820
		PRINT 150.HEAD PRINT 152.LM.1 PRINT 154.N.SP PRINT 166.PMHG	ITN, TEMP Pin, IMAX		•			. •	HAME 330 HAME 340
•	с с с	DEFINI							HAME 920 HAME 930 HAME 940
	č	DR2=DSCFT(2.00 IMAX2=IMAX*IMA NN=(N+1)*N/2					•	,	HAME 950 HAME 960 HAME 970 HAME 980
	c	-	CT ANE CONVERT	FIELD V	VALUES	•			HAME 980 HAME 99 HAME1000
	νυγυν		TICNS LOOP STAR						HAMF1100 HAMF1100
		DC 204 IT=1.IT NL=0	r <u>m</u>						HAMF1120 HAMF1130 HAMF1140
	с с - с	INITI	ALIZATION			. •			HAMF1150 HAMF1160 HAMF1170
	206	DD 207 J=1.IM DH(IJ.J)=ZERD 7 DHT(IJ.J)=ZERD DD 206 IJ=1.II 6 D2F(IJ)=0.D0 .DC 208 I=1.IM 8 D1F(I)=C.D0 PRINT 168.IT CONT 169.	0 MAX2	• •				·	HAMF 1180 HAMF 1190 HAMF 1200 HAMF 1210 HAMF 1280
	••• •	PRINT 169 PRINT 172.(P(PRINT 172.(P) PRINT 172.(P) PRINT 171 PRINT 171	(1),1=7.12) (` .			<u> </u>		
	-	PRINT 172.(P(****OUADRUPCLE DC 402 LL=1.2 ML=12+LL	TER4 ******		 				
	4 0;	02 A(LL)=F(ML) CALL QUAD(P.A DC 404 LL=1.2 DC 406 LC=1.2	4 2	<u>,</u>	ŝ				
	4 C	C6 A(L0)=0.D0 A(L1)=1.D0 CALL QUAD(DA. NX=12+LL		7		,			. ·
	 4(06 408 NA=1.3 (8 CH(NA,NX)=DA(36 (NA)						
	ΔC	C4 CCNTINUE \$\$\$\$\$ SHFS TERM DC 403 LL=1+6	55 55 5 5		,		.^		
	40	ML=6+LL 03 A(LL)=P(ML) CALL SHFS(D4	A.A)		•		• ,		
• •	43	00 430 LL=1.3 30 8(LL)=8(LL)+0 00 405 LL=1.6	36 DA(LL)		•				
	4 (DC 407 LC=1.0 07 A(LD)=0.D0 A(LL)=1.D0 CALL SHFS(D)	4			• ,			. *
T	. •		=1.36				`		• ·
	•		•						

	1 MAIN DATE = 31171 01/33/	' <u>E</u> 3
	H(MA, hX) = DA(MA)	
	Ο ΣΟΥ ΣΟΟΣ Ο SUTTING UN ΠΙΕΝΆ ΙΝΟΞΟΓΝΟΞΑΤΟΟΜΑΟΝΕΥΦΊΟ ΟΓ ΑΛΤΑΙΧ ΔΕΓΛΕΝΤ ΟΠ Η(ΙΔΠ) ΑΝΌ ΠΙΕΝΆ ΙΝΟΞΟΓΝΟΞΝΥ ΜΑΤΑΙΧ ΔΕΓΜΕΝΤΟ ΟΠ ΌΗΟΙΑΠ ΟΠΤΗΠ Α-ΜΑΤΓΙΧ	
, coc	TPANSITIONS LCOP STARTS HENE	44 4F 1 44 4F 1 44 4F 1
C C	CALCULATE ENERGY DIFFERENCE FROM EXPERIMENTAL FREQUENCY CALCULATE COMPONENTS OF FIGLO VALUES	HANE1 HAME1 HAME1 HAME1 HAME1
	222 L=1.LM STAM = PETA(L) *.0174533 NTH=DSIN(THETAM) STM=DCOS(THETAM) NPH=DSIN(CHIM) SPH=DCOS(PHIM) SCOSPH#JINTH STOPH#SINTH	-11 4F1 HAMF1 HAMF1 HAMF1 HAMF1 HAMF1 HAMF1 HAMF1 HAMF1
303 Pr	COSTH NNT 174, BETA(L),ALPHA(L) NYTO,	HA 4E 1
	(=HP(L,INDEX)*Y]=H3(L,INDEX)*Z _=NL+1 	44 45 1 44 45 1 44 45 1
uuu ,	SETTING UP FIELD DEPENDENT MATRIX FLEMENTS DE H(IAB)	43.4F1
310 A C	2 413 LL=1+6 (LL)=₽(LL) ALL 9449(4,24,4×,6×,67)	
450 H C SI	C 400 LL=1,36 (LL)=DA(LL)+P(LL) IT=UP THE DERIVATIVES OF THE S-MATRIX D 412 LL=1,5	•
414 A A	DC 414 LCT=1.6 (LCT)=0.00 (LL)=1.00 ALLHMAN(A.04.HX.HY.MZ)	
0 415 D	1 416 NH=1,36 H(NH,LL)=DA(NH) JNTINUE	
0 415 D	H(NH,LL)=DA(NH)	43, 487 2 143, 487 2 143, 487 2 143, 487 2 143, 487 2
0 415 D 412 C C C C C C C C C C C C C C C C C C C	H(NH,LL)=DA(NH) UNTINUE CALL CEIGEN DIAGONALIZE COMPLEX MATPIX H(IAC) ORTAIN EIGEN VALUES STORED DIAGONALLY 14 H(IAP) OBTAIN EIGENVECTOPS STORED IM EVECT(IE) CEMAT(F(2X,512.5))	112 AF 2 112F 1 117 F 2
0 416 D 412 C C C C C C C C C C C C C C C C C C C	H(NH+LL)=DA(NH) INTINUE CALL CEIGEN DIAGONALIZE COMPLEX MATPIX H(IAC) Obtain Eigen Values Stored Diagonally IN H(IAP) Obtain Eigenvectors stored in Evect(IE)	43.472 43.472 43.473 43.473
416 D 412 C C C C C C C C C C C C C C C C C C C	H(NH,LL)=DA(NH) INTINUE CALL CEIGEN DIAGONALIZE COMPLEX MATPIX H(IAC) ORTAIN EIGEN VALUES STORED DIAGONALLY IN H(IAP) OBTAIN EIGENVECTOPS STORED IN EVECT(IE) CEMAT(P(2X,312.5)) V=0 ALL CEIGEN (H.EVECT.N.MV) C 236 K=1.N AR=K*(K+1)/2 N(K)=H(IAF) /2.00229 W=IF(INDEX) K=JF(INDEX)	43,472 43,463 43,463 43,463 43,473 43,473
0 416 D 412 C C C C C C C C C C C C C C C C C C C	H(NH,LL)=DA(NH) INTINUE CALL CEIGEN DIAGONALIZE COMPLEX MATPIX H(IAC) OBTAIN EIGEN VALUES STORED DIAGONALLY IN H(IAC) OBTAIN EIGENVECTORS STORED IM EVECT(IE) CEMAT(F(2X,312.5)) V=0 AUL CEIGEN (H,EVECT.N.MV) C 236 K=1.N AB=K*(K+1)/2 N(K)=H(IAG) /2.00229 W=IF(INDEX)	44.4年2 45.4年2 45.4年2 45.4年2 45.4年2 45.4年2 45.4年2
416 D 412 C C C C C C C C C C C C C C C C C C C	<pre>H(NH,LL)=DA(NH) INTINUE CALL CETGEN DIAGONALIZE COMPLEX MATPIX H(IAC) OBTAIN EIGEN VALUES STORED DIAGONALLY IN H(IAC) OBTAIN EIGENVECT(PR STORED IM EVECT(IE) CEMAT(F(2X,312.5)) V=0 ALL CETGEN (H.EVECT.N.MV) C 236 K=1,N AB=K*(K+1)/2 N(K)=H(IAG) /2.00229 W=IF(INDEX) x=JF(INDEX) =IF(INDEX)</pre>	44,4年2 45,26 45,26 45,46 45,47 45,47 45,47 45,47 45,17 2 45,17 2
416 D 412 C C C C C C C C C C C C C C C C C C C	<pre>H(NH,LL)=DA(NH) INTINUE CALL CEIGEN DIAGONALIZE COMPLEX MATPIX H(IAC) OBTAIN EIGEN VALUES STORED DIAGONALLY IN H(IAC) DBTAIN FIGENVECT(PR STORED IM EVECT(IE) CEMAT(F(2X,312.5)) V=0 ALL CEIGEN (H,EVECT.N.MV) C 236 K=1.N ALL CEIGEN (H,EVECT.N.MV) C 236 K=1.N ABEK*(K+1)/2 N(K)=H(IAG) /2.00229 W=IF(INDEX) K=JF(INDEX) K=JF(INDEX) PINT 173.M.K.DELTA TRANSECPM CH(IA2.1) TO NEW CASES</pre>	44.4年2 45.4年2 45.4年2 45.4年2 45.4年2 45.4年2 45.4年2
415 D 412 C 412 C C C C C C C C C C C C C C C C C C C	<pre>H(NH,LL)=DA(NH) INTINUE CALL CENGEN DIAGONALIZE COMPLEX MATPIX H(IAP) OBTAIN ENDENVECTOPS STORED IN EVECT(IE) CEMAT(F(2X,312.5)) V=0 AUL CENGEN (H.EVECT.N.MV) C 236 K=1,N AB=K*(K+1)/2 N(K)=H(IAH) /2.00229 W=IF(INDEX) K=JF(INDEX) K=JF(INDEX) K=JF(INDEX) FINT 173.4.K.DELTA TEANDECPM DH(IAD,1) TO NEW DASID MMM=1 DC 240 I=1, IMAX</pre>	44.4年2 45.4年2 45.4年2 45.4年2 45.4年2 45.4年2 45.4年2 45.4年2 45.4年2 45.4年2 45.4年2 45.4年2 45.4年2
415 D 412 C C C C C C C C C C C C C C C C C C C	<pre>H(NH+LL)=DA(NH) INTINUE CALL CEIGEN DIAGONALIZE COMPLEX MATPIX H(IAC) DETAIN EIGENVECT(PS STORED DIAGONALLY IN H(IAC) DETAIN TIGENVECT(PS STORED IN TVECT(IE) CEMAT(P(2X,312.5)) V=0 ALL CEIGEN (H.EVECT.N.MV) C 236 K=1.N ALL CEIGEN (H.EVECT.N.MV) C 236 K=1.N AR=K*(K+1)/2 N(K)=H(IAA) /2.00229 W=IE(INDEX) K=JF(INDEX) K=JF(INDEX) K=JF(INDEX) FINT 173.4.K.DELTA TRANDECPM DH(IA2.1) TO NEW BASIS NVM=1 C 240 I=1. IMAX C 451 I2=1. 36 N(I)=CH(I2.1) ALL STOME(P) OD ALEVECT.N.KM .NK)</pre>	44.4年2 45.4年2 45.4年2 45.4年2 45.4年2 45.4年2 45.1年2 45.1年2 45.1年2 45.1年2
415 D 412 C C C C C C C C C C C C C C C C C C C	<pre>H(NH.LL)=DA(NH) INTINUE CALL CEIGEN DIAGENALIZE COMPLEX MATDIX H(IAC) OBTAIN DIGENVECTEDS STORED DIAGONALLY 10 H(IAD) OBTAIN DIGENVECTEDS STORED IN TWEET(IE) CEMAT(P(2x,312.5)) V=0 ALL CEIGEN (H.EVECT.N.MV) C 236 K=1.N ALL CEIGEN (H.EVECT.N.MV) C 236 K=1.N AB=K*(K+1)/2 N(K)=H(IAB) /2.00229 W=IF(INDEX) K=JF(INDEX) K=JF(INDEX) K=JF(INDEX) K=JF(INDEX) R=INT 173.H.K.DELTA TRANSECPH CH(IAD,I) TO NEW DAGID NVM=1 PC 240 I=1, IMAX NC 451 ID=1, 36 NVM=1 PC 240 I=1, IMAX NC 451 ID=1, 36 NCM=1 PC 240 I=1, 10 NCM=1 PC 240 I=1, 10 NCM=1 PC 240 I=1, 10 PC 240 I=1, 10</pre>	44.4年2 47.4年2 47.4年2 47.4年2 47.4年2 47.4年2 47.4年2 47.1年2 47.1年2 47.4年2 47.4年2

	•			<i>.</i> •		
						55
1 IV	G LEVEL	21.		MAIN .	DATE = 01171	01/33/59
	c				-	
	, c c		SETTING U	P DE (INDEX.I)		
•	¢	K X 4=1	K11#K31+K3172	. ,		-1 \ • • 1 \

.4

,

ł

,

55

~		
C C	-	++ N + E 2
Ś		(+ 1 = 2
<u> </u>	SETTING OP DE(INDEX.I)	HN1F2
C.		-1 1 15
	てきる(人) (またがすべる) 入口	44 482
•	KWW=NK*(NK+1)/2	43.3E 2
	S DD 246 I=1. LMAX	919E2
~	$p_{E(1)=0+T(K_{n+1},1)-O+T(K_{n+1},1)}$	HATE
2	· SETTING UP DIF/CF(1)	HAME 2
		45 4F 2
· ·	$D1F(1) = D1F(1) + (2 \times DELTA \times DE(1))$	HAME?
	246 CONTINUE	91X19F2
	248 CENTINUE	44 1F2
~	245 CENTROL	HAME 2
c c	SETTING UP D2F/CP(I)DP(J)	HAVE?
2		* HAME2'
	DC 250 I=1+IMAX	H \$ 14 F 2
	00 250 J=1.TMAX	🕳 HAME 2
	1F(HA(L,INOFX),LE.0.0) GC(T) 222	
	$I \downarrow = I + (\downarrow - 1) = I^{*} \Delta X$	いく クロコ
		- 면소생론 2
	CO 252 ID=1+N	HANE 31
	IF(ID+LT+KW) GC TC 256	* HAMED
	IF(ID.EC.KW) GO TO 254	HAME2
	KID=K((+(ID+ID-ID))/2)	+A 1F 3
	CHTI=SCCNUG (SHT(KID+I))	43 AF 3
	OHTJ=OHT(KIO+J)	(4 % 4 F 3
	TE(TO+EC+NK) GC TC 260	

		KID=KJ+(ID+ID-ID)/2	•	••• • • •
		CHTI=OCCNUS(OHT(KID+I))		4 N AF 3
		OHTJ=0HT(KI0,J)		43 4F 3
		TE([D.EG.NK]) GC TC 260	_	1 1 1 1 1
			-	на и е з
	254	IF(ID-LT-NK) GC TO 258		441F3
		KIDA=NK+(ID*ID-ID)/2		444F3
		DHTIA=DCCNJG(DHT(KIDA+I))		
		DHTJA=DHT(KIDA,J)		HAMES
•		GC TA 262 1		14A 16 3
	265	KID=IO+(K%*K !-K%)/2	 1	· · · · · · · · · · · · · · · · · · ·
		DHTI=DHT(KID,I)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

	DHTJ=DC(NJG(DHT(KID,J))	HA 15 3
•	K IDA = ID + (NK * NK - NK)/2	HA 4F 3
	DHTIA=DHT(KIDA+I)	HAMES
	DHTJA=DCDNJG(CHT(K1DA+J))	HX##3
	GO TO 262	HA 4F 3
	3 KIDA=ID+(NK**K-NK)/2	41 1 F
•	PHTIA=DHT(KIDA,I)	4 N 11 F (3)

253 KIDA=ID+(NK*NK-NK)/2	
CHTIA=OHT (KIDA+1)	111F 3
	出入 ふたご
DHTJA=DCCKJG(DHT(KIDA+J)) D2E=D2E+2+D3*DHTIA*DHTJAZ(F1(NK)+EN(10))	
	H11F3
261 D2E=02E-2.00*0HII*0HIJ/(EN(KW)-EN(ID))	HA 부론 3
	-44 HF 3
GO TO 252	44 4F 3
262 D2E=D2E+2.D0*DHTIA*DHTJA/(EN(NK)-EN(IC))-2.D3*DHT1*CHTJ/	
1 (EN(<5))-EN(())	10 HF 3
252 CONTINUE	· · · · · · · · · · · · · · · · · · ·
001C(IT)=05E(IT) +(5+00★05(I) ≠05(T))+004≉0€(I)	4 (1 6 7
	4
25 CENTINUE	
222 CONTINUE	14 X 17 F 3
NEPEEENL-IMAX	144 AE 3
	HAME 3
XLSF=XLSF/NFPEE	414F3
DD = 264 I=1.4 I.4 X	
D1F(I)=D1F(I)/NFREE	H N 4F 3

	DC 264 J=1+IMAX			-1 A 11 E 3
	$I J = I + (J - 1) \times I \vee A \times$		•	HAME 3
	DOF(IJ)=J2F(IJ)/NF-FF			HAME 3
	D2FINV(IJ)=D2F(IJ)	•		H 7 J 1 2 3
264	CONTINUE	8	 	· + \ ^F 3
<u> </u>	00.00		\rightarrow	47, 261, 4
ć	CALCULATE AND	PRINT PREDICTED DI	LEPEACE ALMES D(T)	-14 1E J
•	PRINT 2000. (02 TINV(1)			
	PRINT 2000. (01F(I).I=1			
r				H N 15 B
	CALL DUINVOORFINVOJUAY	(,)ET())		1.1.1
2000				
	DC 265 1=1.1 1AX		,	이 대학 사람 것
	IJ=I-IYAX			4N 3E 3
	D(1)=0.00			43.452

D(1)=0.00 D0_265 J=1.1 MAY IJ=IJ+1MAX D(4) D(1)=D(1)=02615V(IJ)#D15(J) P01MT 160 43 (F) (5 16 7 (5 16 5 (5 16 5 (5 16 5 (5 16 5 . .

> · · .

v :	GLE	- Ivel	21 j	MAIN	,	DATE = 81	176	22/01/	EA •
		465	DH(NA+FX)=DA(NA)	_					• 12 2 32
		405	CENTINGE SETTING UP OF H(IAB) A SET-UP THE	ND FIELQ	EPENDENT I NDEPENDI	CCMPONENTS	OF MATR ELLMENTS	IX ELEMENT OF OH(IAB	HAMF 1310 SHAMF 1320 .HAMF 1330
	¢ ¢ ¢		THAN ATTICNS		RTS FERE		-		HAME 1340 HAME 1710 HAME 1720
	000000		CALCULATE (CALCULATE (NERGY DIE	FERENCE	FRUM EXPERI D VALUES	IMENTAL F	REQUENCY	HAME 1720 HAME 1730 HAME 1740 HAME 1750 HAME 1760
	-		DC 222 L=1.LM THETAM = RETA(L)	0174533			. .	•	/
			0F1VE ALPHA(L)*.01 01NTHE0SIN(THETAM) 000THE0C0S(THETAM) 51NPHE0SIN(PHIM)	(4533				· • • • • •	намр 1300 На 461810 Памб 1820
			CCSPH=DCOS(PHIM) y=COSPH*SINTH y=SINPH*SINTH		•	•			HAME 1830 HAME 1840 HAME 1850 HAME 1860
			7=COSTH 17 (11.NF.1TM) GC T DEINT 174. PETA(L) PRIMT 170	303 .Alpha(L)		~		•	HAME 1900
			NY=0 D0 222 INDEX=1.11 IF(HB(L.INDEX). LE Fy=HP(L.INDEX)#X	.0.) GC TC) 248		••		
	·. c		HY=HR(L+INDEX)*Y H?=H3(L+INDEX)*Z NL=NL+1			,			НАМЕ 1930 НА ИЕ 1970
	ċ		SETTING UP	FIELC DE	PENDENT N	ATHIX ELEN	ENTS OF P	+(IA6) -	HAME 1980 HAME 1990
		410	DC 410 LL=1.6 A(LL)=P(LL) * CALL HHAM(A.OA.HX. DC 409 LL=1.50	+¥, ⊢Z)				•	
	. c		- H(LL)=CA(LL)+H(LL) - SET-UP THE DERIVAT - SG 412 - LL=1+6	IVES CF T	HE G-MATH	X1X	-	. 	. •
		414	DL 414 LCT=1.6 A(LUT)=0.00 A(LL)=1.00 CALLHHAN(A,DA,HX,H	Y,HZ)					
			01 410 NH=1+30 01 (01+11)=04(NH) CCNTINUE					•	HAMF 2340
			CRIAIN EIG	AN VALUES	STORED	FLEX MATRIX DIAGUNALLY IN EVECT(IE	IN HULA	8)	HA 4F2350 HA 4F2360 HAMF2370 HAMF2380
		3200	M V = 0				•		HANE 2340 HANE 2400
	•		CALL SEIGLN (H.EV) JL 235 K=1.N 1AB=K*(K+1)/2	, <u>c</u> t, n, nv) 	· · ·		a oʻya a omoorem A		HAHF2430
		230	CN(K)=F(IAE) /2.00 KW=IF(INDEX)	. 229					HAMF2440
		2	NK=JF(INDEX) DFLTA=(EN(NK)-EN() V=IF(INDEX) K=JF(INDEX)	(A))-+CF(L	_)				· •
			-11 (IT-NL-ITH) GE - PRINT 170-4-K-DEL		•	.	معیم با با ایس د مع		HAMF2550
			TLAKSECOM	2년(1호트·I)	TU NEW	PASIS			HAME 2560 HAME 2570 HAME 2550
			- タイオニ1 - ジーン ゴー1・「1*A X」		-				, ,
		ي يون من	30 401 14=1. 00 E DA(T)=DH(14+1) CALL STC*(C02+DA+ DO 452 T2=1. 25	EVECT . N . KI	w . 11iĉ)				• •
		45	> EHT(I),I)=000(1F)	•					

. . . **→** .

56

·· _

					•	57-
 V G LEV	/EL	2.1	ALAN.	DATE =	B1176	22/01/58
		CONTINUE				
c.		-XLSF=XLSF+{DELI	FA##2}			
						HAME2
ć		SETTING	5 UP DE(INDEX+I)		THAME2 HAME2
,		Kry=(K;*+K+K+)	_			HAMÉ2 HAMÉ2
•		- K 22 = 16 * (16 + 1)/1 - DG 2400 1= 1+ 14A)	K			HAME2
ć		DE(I)=DFT(KWW+)	• *	·		H1MF2 HAMF2
· · ·		SETTING	S UP DIF/DP(I)	· • •		HANF2 HANF2
;	241	1 = (1) = L1F(1) + CCNTINUE	(2*JELT^*CE(I))			HA4F2 HAME2
		CONTINUE				HAME2 HAME2
vec	·	SETTING	G UP D2F/CF(1)D	P(J)		HAME 2 HAME 2
C		00 250 I=1+1 MA		2 2 1	N	HA HE 2
		-96 260 J=1,1MA) -19(HP(1,1NDEX)	X •LE•9•0) GC TO	222		HAME2
		IJ=1+(J−1)*13A) DIE=9.DC		-		HAME2 HAME2
		00 232 10=1.N 1F(10.LT.KN) G	C TC 256	المبغا بالمبيد ممراد		HAME2
	-	1F(10-CC-KW) G	C TC 254			HAME 3 HAME 3
,		- FID=K#+(ID#ID+ - PHTI=D(CNJG(0H	T(KIC+1))	• .	• •	HAME3
•		- DHIJ=DHI(KI).J DHIJ=DHI(KI).J				HAMES HAMES
	254	- IF(I)+LT+NK) G - NICA=NN+(10+ID		• •		HAMES HAMES
		SHTIA=LCONJG(D SHTJA=DHT(KIDA	HT(KIDA.I))			HANES HANES
		GC TO 262			, 	HAME3
	2	- KID=10+(KW+KH- CH11=0FT(KID+I) .		• •	HAME 3 HAME 3
		- DHIJ=DCCNJG(DH - K 1JA=1,J+(NK#1K	- NK) / 2			HAMES
		- CHTJA=DFT(K10A - DHTJA=DCCNJG(D		•	•	HAMES HAMES
	250	-GC TU 262 -KID%=ID+(NK*NK	-NK)/2			HAMES HAMES
•		DHTIA=DHT(KIDA DHTJA=DCCNJG(U	• I)			HAMES
		ELE=020+2+00≠0	HT1A4DHTJAZ(EN	(NK)-EN(ID))		HAME S HAME S
	600	-00-10-253 -00+0	HT1+0HTJ/(EN(K)	(10) - EN(10)		HAME
	200	- GE TO 252 - D25=025+0.00*0	HTIA+OHTUAZ(EN	(NK)-ÉN(ID))-2.	VUTHC*ITHC=00	HAME
		1 (EN(K%)-EN(1D - CENTINUE:				HAMES HAMES
	55.3	- DOF(IU)=DPF(IU - CENTIQUE)+(2+D0+CE(I)*.)E(J))+C28#DELT	A	HAME: HAME:
	722	CENTINUE NERCENL-IMAX	•			HAME: HAME:
,		XLISEEXLSEZNERE				HAME
		DC 204 I=1,JMA D1F(I)=D1F(I)/	NFREE			HAME
		- IJ=I+(J−I)*I*A AAI+(J−I)*I*A	X	•		HAME.
		005(1J)=02F(1J 01F1VV(1J)=03F	(L)			HAME: HAME
ç.		CLIVITE HUE (· ••		• • •	HAME: HAME:
		CALCUL	ATE AND PRINT : S2FINV(IJ)+IJ=1	PREDICTED DISPL ,IMAX2)		HA ME:
-			F(1), 1=1, 1MAX)			HA ME :
C		CILL SALAVOR	INV.INAT.DETTO) `		-14-15
	101.0) F - AT (DX+14). Du 200 1=1,144				HAHF.
		I J = Y - I V A X				HAME. HAME.
		10-200 U=1+1)4 10-10+1+1×1×	X X			HAME.
•		10-10-19-1				

<pre>S IIVL 21 VAIN DATE = 81170 22/01/53 S(A ())=0(1)-J2*INV(IJ)*CIF(J) FRINT 160 FRINT 161,(0(1),I=1,12) FRINT 161,(0(1),I=1,12) FRINT 161,(0(1),I=1,2) FRINT 161,(0(1),I=1,2) FRINT 161,(0(1),I=1,14) C (ALC)LAT_ AND PRINT VEN VALUES FUN PARAMETLES D(1) HAMF3500 HAMF350 C (I)=0(1)+I=(1)+V(I) FRINT 164 FRINT 172.(0(1),I=1,14) AMF3500 TI=11+IMAX+1 HAMF3500 TI=11+IMAX+1 HAMF3500 FRINT 165 FRINT 165 FRINT 166 FRINT 172.(SIGVA(I),I=1,14) FRINT 167.(SIGVA(I),I=1,14) FRINT 167.(SIGVA(I),I=1,14) FRINT 166 FRINT 172.(SIGVA(I),I=1,14) FRINT 172.(SIGVA(I),I=1,14) FRINT 172.(SIGVA(I),I=1,14) FRINT 172.(SIGVA(I),I=1,14) FRINT 172.(SIGVA(I),I=1,14) FRINT 172.(SIGVA(I),I=1,14) FRINT 166 FRINT 172.(SIGVA(I),I=1,14) FRINT 172.(SIGVA(I),I=1,1</pre>		•	S. 199		•	•		•	c 0
1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:		•				• • •	-	<u></u>	58
<pre>HAT 140 A 143 A 143 A 143 A 143 A 143 A 143 A 144 A 144</pre>	Θιεν	EL	21	•	MAIN	· DATE = 8	1170	22/01/	53
<pre>FFINT IF1.(0(1).F=12.1F##) FC INT IF1.(0(1).F=12.1F##) C CLC (LAT_ AND FFINT VLD. VALUES FUN PARAMETLPS J11) FC CLC (LAT_ AND FFINT VLD. VALUES FUN PARAMETLPS J11) FC CLC (LAT_ AND FFINT VLD. VALUES FUN PARAMETLPS J11) FC CLC (LAT_ AND FFINT VLD. VALUES FUN PARAMETLPS J11) FC CLC (LAT_ AND FFINT VLD. VALUES FUN PARAMETLPS J11) FC CLC (LAT_ AND FFINT VLD. VALUES FUN PARAMETLPS J11) FC CLC (LAT_ AND FFINT VLD. VALUES FUN PARAMETLPS J11) FC CLC (LAT_ AND FFINT VLD. VALUES FUN PARAMETLPS J11) FC CLC (LAT_ AND FFINT VLD. VALUES FUN PARAMETLPS J11) FC CLC (LAT_ AND FFINT VLD. VALUES FUN PARAMETLPS J11) FC CLC (LAT_ AND FFINT VLD. VALUES FUN PARAMETLPS J11) FC CLC (LAT_ AND FFINT VLD. VALUES FUN PARAMETLPS J11) FC CLC (LAT_ AND FFINT VLD. VALUES FUN PARAMETLPS J11) FC CLC (LAT_ AND FFINT VLD. VALUES FUN PARAMETLPS J11) FC CLC (LAT_ AND FFINT VLD. VALUES FUN PARAMETLPS J11) FC CLC (LAT_ AND FFINT VLD. VALUES FUN PARAMETLPS J11) FC CLC (LAT_ AND FFINT VLD. VALUES FUN PARAMETLPS J1) FC CLC (LAT_ AND FFINT VLD.</pre>	2		P.INT 180		المعاملين والم	• • • • • • • • • • • • • • • • • • •	· ·		-HAAF 3480
CALC JLAT_ AND CFINT (LE VALUES FUL PARAMETLPS)() CALC JLAT_ AND CFINT (LE VALUES FUL PARAMETLPS)() AAF 3500 AAF 3500 AA			FRINT 181 FRINT 182	,(D(I),I=	1.12)				HAME3490
<pre>C</pre>	c							、	
<pre>2 Lilize it doits'</pre>	e e				AND FRINT NEY	. VALUES FUR PAR	AREILPS PUI	,	HA 4F 3520
<pre> Frint 1fC Frint 1fC (r(1),1=13,14) Frint 172.(r(1),1=13,14) Al(CIA) Al(C</pre>	2	260	#(1)=>(1))+0(1)		• • •	يد و مورد د .	••••	HA4F3540
<pre>crivt 170 crivt 172, 19(1),1=13,14) ALEFT #AXEST 11=-1MAY 11=-1MAY 11=11+1PAX+1 Add 3350 11=11+1PAX+1 Add 3550 11=11+1PAX+1 Add 3550 11=11+1PAX+1 Add 3550 11=11+1PAX+1 Add 3550 11=11+1PAX+1 Add 3550 11=11+1PAX+1 Add 3550 Add 3570 CCTTINUE CreC. FC: CENVEFGENCE UF P(1) CreC. FC: CENVEFGENCE CreC. FC: CENVEFGENCE UF P(1) CreC. FC: CENVEFGENCE CreC. FC: FC: FC: FC: FC: FC: FC: FC: FC: FC:</pre>			PFIRT 169	3	1.6)	•			
<pre>Ecliv 171 PF [IT 172_(D([]), [= 13, 14) X [IT 174, [] MAX II = 1 + 1 + A II = 1 + A II =</pre>			COINT 170	2					•
HAMF3500 C:70 [1:1:1:4] HAMF3600 HAF			FFINT 171	1 2.(우(I).I=	13,14)				UA146 75 20
<pre>HA ##3510 X1 51 = 1 # A ##3610 X1 52 = 52 (SF E ** NF (1)*D(1)*()2F(11)*D(1)*Z*D0 A ##3500 A ##3500 A ##3500 A ##3670 A ##3720 A ##3310 A ##3320 A ###3320 A ####3400 A ###3400 A ###3400 A ###3400 A ###3400 A ###3400 A ###3400 A ###3400 A ###3400 A ####3400 A ####3400 A ####3400 A ####3400 A ####3400 A ####################################</pre>			XLENE4=XL II=-IMAX	_SF		· · · · · · · ·	· • • • • • • • • •	.	HAME3590
<pre>J = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 2000 I = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 2000 I = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =</pre>			TTETTATM	A Y 🛨 1	1140(114/025	([]]#©(]]#0(])>>	12.00		HAME3610
LC 272 J= J=J ¹ L, IMAX iJ=Ii-1; MAX ZFW EXLENE + D2F(IJ)+E(I)+D(J) HAMF 3660 HAMF 3660 HAMF 3660 HAMF 3700 HAMF 3			$\square \otimes I \land = I + 1$						HA 4F3630
<pre>xLSNF w= xLSNEwh02F(1J)*E(1)*E(1)*E(1) 270 CCNTINUE CrECN FCH CCNVEFG5NCE DF P(1) Haf 3600 11s-1Max Haf 3700 Haf 3720 Haf 3720 Haf</pre>			CC 272 U:	= J™I‰ I MAX J					HAMFSOLD
<pre>2/0 CCNTINCL HA4F3710 HA4F3710 HA4F3710 HA4F3720 GC 274 1=1,1AAX HI=11+1AAX HA4F3720 GC CALCULATE SIGMA(I) CALCULATE SIGMA(I) CALCULATE SIGMA(I) HA4F3750 CALCULATE SIGMA(I) HA4F3750 HA4F3</pre>	2	272	XL SNE W= XI	LSNEW+D2F(L)0*(I)3*(L) ,	•		HAME 3680
C CHECK FER CENVERGENCE OF P(1) 11:-174X 11:-174X 11:-174X 11:-174X 11:-174X 11:-174X 11:-174X 11:-174X 11:-174X 11:-174X 11:-174X 14:	c	2,70							HAME 3700
<pre>11 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1</pre>	c c				CONVERGENCE	()F P(1)			HA 4F3720
HAMF3700 HAMF3700 HAMF3700 HAMF3700 HAMF3700 HAMF3700 HAMF3700 HAMF3700 HAMF3700 HAMF3700 HAMF3700 HAMF3700 HAMF3700 HAMF3700 HAMF3700 HAMF3300 HAMF3300 PFINT 100 PFINT 100 PFINT 100 PFINT 122.(SIGWA(1).1=1.6) OPINT 172.(SIGWA(1).1=7.12) CTIUT 172.(SIGWA			56 274 1	=1.I-AAX			•	•	HAME 3740
C CALCULATE SIGWA(I) C14 SIGMA(I)=DSUPT(DAPS()2FINV(II)*XLSNE%*2.DO/NFREE)) HAWF3700 HAWF3300 HAWF3200 HAWF3200 HAWF4210	,		11=11+1× 15 (D2F(II).LT.0.U	00) PRINT 188	• I			HAMF3760 HAMF3770
<pre>1:4 316 VA(1)=CSUF(CAPG(22FINV(11)*XLSN2N*2.200/NFREE))</pre>	· · ·					· -			HAME 3780 HAME 3790
AHESLEWEDSCOT(XLSNEW) HAMESSEW PEINT 186 HAMESSEW PEINT 186 HAMESSEW PEINT 172 (SIGMA(I),I=1.6) PEINT 172 (SIGMA(I),I=7.12) PIIT 171 (SIGMA(I),I=13.14) PATE NOT 150,00000000000000000000000000000000000		874	- 1140=0968	T(XLSE)	· ·	*XLSNEW*2.D0/NF	REE))		HAMF 3800
PFINT 172.(SIGMA(I),I=1.6) POINT 170 FINT 172.(SIGMA(I),I=7.12) PT1:T 172.(SIGMA(I),I=13.14) PAMF3d60 PAMF4200			PRINT 18	SCAT (XL SNE 6	5w)	· ·		•	HAME 2920
Friatir 22.(SIGMA(1).I=7.12) Firtr 171 Friatir 172.(SIGMA(1).I=13.14) Friatir 160.2040.005.2000.0000 1021 CONTINUE IF (NCONE) 1021 CONTINUE Sice MAMEG200 HAMEG200			PRINT 17	2.(SIGMA()	1),1=1,6)				
стінт і72.(510VA(I).]=13.14) на 4F 3 450 нам F 3 450	. •		FF14T-17	2.(516#4()	1),1=7,12)				
294 CCNTINUE IF (NCTINUE) 1001 CCNTINUE CTOP TND 4 4 4 4 4 4 4 4 4 4 4 4 4			ี่ความสาวว่าว	2, (SIGMAC)	1) • 1= 13 • 14)				HA 183350
1001 CENTINUE SICO TNO 200		204	CONTINUE						HAMF3260
	1	001	CCNTINUE SICP						HAME4200
			280						HAMP 4210
			. . .	· • - ·	··· ···				same e equina en
									··· · · · · · ·
	مريس عرب	• • • •		n - ≖ n,	المعتمونين متصورتها	• •	ana ang i sa na sana ang ang ang ang ang ang ang ang ang		
							,		
				•			-		
			9						
		•							
									, ,

.

Subr	outine:	CEIGEN
Purp	ose:	Compute eigenvalues and eigenvectors of a Hermitean
		matrix (double precision complex).
	-	
Usag	re:	CALL CEIGEN (A,R,N,MV)
Desc	riptión	of parameters:
	-	OMPLEX * 16) original Hermitean matrix, destroyed during
	CO	mputation. Upon return, A is the diagonalized matrix
	wi	th storage is ues; the upper right side of the matrix
	ac	tually stores: the (I,J) element is the I + $(J * J - J)/2$
	el	ement of A for I J For I J the (I,J) element is the
	co	mplex conjugate of the (J,I) element, i.e. of the J +
	(I	* $I = I)/2$ member of A.
-	२ – (C	OMPLEX * 16) the unitary transformation which diagon-
F		izes A. The colums of R are eigenvectors of A ordered
		are the eigenvalues.
1	N- th	e order (dimension) of A and R
r	MV - in	put code:
	•••	0 compute eigenvalues and eigenvectors
		I compute eigenvalues only. (R need not
		be dimensioned but must still appear in
		calling sequence.)
Met	hod: ar	n extension of the Jacobi method to Hermitean matrices
	as	given, for example in CE Froberg, Introduction to
	Nu	merical Analysis (Addison-Wesley, 1965) ^{(*} p. 111. The
	cc	oding parallels that for EIGEN (see publication 360A-
	C	1, p. 165).
Pro	grammed	bý: Wm. E. Bavlis, 'Physics Department,
		University of Windsor.
• Exe	cution (time: 0.5 sec CPU on the IBM 360 Model 50 of Univer-
		sity of Windsor for $N = 4$. The time will vary
		roughly as N ⁴ but will be less if some off-dia-
•		gonal elements of A are initially = 0.

1

60

ļ

Enissime PE

HAGE

1

		•
- ŞJU C	B LIST XXXXXXXX UNWIN	00004300
C	COMPUTES DUJELE PRECISION EIGENVALUES AND. UNLESS MV=1. ALSO COMPLE: EIGENVECTORS OF THE HERMITEAN MATIX CA OF DIMENSION N .	(00004400 .00004500
č	THE JACOBI METHLD IS USED.	00004600
Ċ.	,	00004700 00004800
<u>v</u> vv	THE CALLING PARAMETERS ARE CA THE HERMITEAN MATRIX TO BE DIAGONALIZED. CUMPACT STORAGE IS	00004900
č	USED. NAMELY THE (I, J)TH FLEMENT OF THE UPPER RIGHT HALF OF	00005000
ç.	THE HEPMITEAN MATRIX IS ELEMENT I+(J*J-J)/2 OF CA. UPON RETURN, CA IS CIAGLNALIZED WITH THE EIGENVALUES IN	00005100
č	ASCENDING ORDER ON THE DIAGONAL	00005300
ç	CR - THE INPUT VALUES OF THIS MATRIX ARE NOT USED. UPON RETURN, 11 MV .NE. 1, CR CUNAINS THE COMPLEX EIGENVECTORS OF THE INPUT	-00005400 -00005500
č	CA MATRIX. THE EIGENVECTURS ARE STOKED COLUMNWISE IN THE	00005600
ć	SAME SEQUENCE AS THE EIGENVALUES.	00005700 00005800 ·
с с с	N - THE DIMENSION OF THE MATRIX TO BE DIAGONALIZED."" MV - IF EQUAL TO 1. UNLY EIGENVALUES AND NOT EIGENVECTORS ARE	00005900
С	CCMPJTED.	00006 0 00 00006100
c	W. E. BAYLIS, PHYSICS, U. WINDSCR, WINDSOR, ONTARIO. FEB. 1972	00006200
ē		00006300
► Ç	IMPLICIT REAL*B (A,D.G.O-Z), CEMPLEX*16(C)	00006400 00006500
·	CUMPLEX*16 ONE/(1.000,0.000)/,ZER0/(0.000,0.000)/	00006600
	CCMPLEX*15 DCCNJG REAL*8 CDABS	
	REAL + 3 COSP+COSP2	00006700
~	QIMENSION CA-(1), CF. (1), CSINP(2)	00006800 00006900
C C	CHECK DIMENSION	00007000
Ē		00007100
	IF(N-1)1.2.5	00007300
2	DO FURMAT (* ERROR. ATTEMPT TO DIMENSION CEIGEN BY N>*+16+*+*/* STOP	E00007400
•	STOP	00007500 00007600
	2 IF (MV .EQ. 1) GD TC 4	00007700
	CR(1) = CNE 4 RETURN	00007800
·· • ··		00008000
, ç	GENERATE IDENTITY MATRIX	000081 0 0 00008200
Ç.	5 RANGE = 1.0D-12	00008300
- • •	IF(MV .EC. 1) GU TO 25	00008400 C0008500
	IQ = -N $OD 20 J=1.N$	00008600
	IC = IC + N	00008700
	$DO 20 I = 1 \cdot N$ $IJ = IC + I$	00008800
	CR(IJ) = ZERD	00009000
	IF(I .EO. J) CR(IJ) = ONE	00100000
с		00009300
	CONPUTE INITIAL AND FINAL NURMS	00009400 00009500
Ľ,	25 ANORM = 0.000	00009600
•	Y = 0.000	00009700
	JIJ = 0 D0 35 J=1.N	00009900
•** ·	(00 35 I=1,J	0001 0000 0001 01 00
	I J = I J + 1 $ X = CA(IJ) *DCGNJG(CA(IJ))$	00010200
	ANCRM = ANORM + X	00010300
	IF(I - EQ - J) GC T J =	00010500
ì	35 CONTINUE	00010600
(·	ANORN = 1.41400*DSORT (ANDRM) ANRMX = ANGRM*FANGE/UFLUAT (N)	00010700 00010800
	IF(Y LE. ANRMY) GU TU 165	00010900
ç	INITIALIZE INDICATORS AND COMPUTE THRESHULD, THRE	00011000
νυυ		00011200 ·
-	I ND = 0	00011300 00011400
	THR = ANORM 45 THR = THR/DFLOAT(N)	00011500
	50 L=1	00011600
•	55 ¥=L+1 LQ = (L≭L-L)/2	00011700 00011800
	LL = LG + L	00011900
	n and a second	1
		•

1

ŵ

61

<u>й</u> 0,а	LQ = N*(L-1) 1) = (N*M-M)/2 M = L + MQ	
	APUTE ELEMENTS OF 2X2 ROTATION MATRIX IF OFF GER THAN THR	000
G L	SAM = CDABS(CA(LM)) F{GAM +LT+ THR) GD TO 130 AM = MQ + M	- 000
- I	MQ = N + (M - 1) NQ = N + (M - 1) ND = 1	000
I	(= CA(LM)) F(X = LT = 0.000) GAM = -GAM (= (CA(LL) - CA(MM))/2.000	
Y	Y = GAN/DSORT(X*X+GAM*GAM) $(F(X = 1T = 0.000) Y = -Y$	00 (*Y))) 00
S	$SINP = \frac{1}{DSORT} (2.00 + (1.0D0 + CSORT(1.0D0 - 1))$ $SINP2 = SINP + SINP$ $CSP2 = 1.0D0 - SINP2$	
C C	LOSP = DSQRT(COSP2) LSINP(1) = GAM*SINP/CA(LM)	00 00 00
G	SINP(2) = DCENJG(CSINP(1)), SSIN2P = 2.0D0*GAN*SINP*CDSP	00
_	TATE COLUMNS AND FOUS L AND M	00 00 00
D	IQ = 0 DO 125 I=1.N IQ = IC + I - 1	00
85 I	IF(I-M) 85.115.90; IM = I + MO MCONJ. = 1	00 00 00
1 20 I	IF(I-L) 100, 115, 105 IL = I + L0	
G	LCCNJ = 1 GD TD 110 IM = M + 1Q	- 00
1.05 I	$\begin{array}{l} MCCNJ = 2\\ IL = L + IQ \end{array}$	
110 0	LCGNJ = 2 CX = C4(IM)*CSINP(MCGNJ) * . CY = CA(IL)*CSINP(3-LCGNJ)	00
Ĩ	$\begin{array}{rcl} \label{eq:constraint} \mathbf{IF}\left(MCONJ^{\bullet}, \mathbf{EQ}, \mathbf{LCCNJ}\right) & \mathbf{GC} & \mathbf{TD} & 112 \\ \mathbf{CA}(\mathbf{IL}) &= \mathbf{CA}(\mathbf{IL}) \ast \mathbf{CCSP} &+ \left\{ \mathcal{CCONJG}(\mathbf{CX}) \\ \mathbf{CA}(\mathbf{IM}) &= \mathbf{CA}(\mathbf{IM}) \ast \mathbf{CCSP} &- \left\{ \mathcal{CCONJG}(\mathbf{CY}) \right\} \end{array}$	
112 0	GO TC 11'5 CA(IL) = CA(IL)*CCSP + CX	00
115	CA(IM) = CA(IM) * CCSP - CY IF(MV .EQ. 1) GO TO 125 ILR = ILQ + I	
1	IMR = IMQ + I $CX = CR(ILR) * CLSP + CR(IMR) * CSINP(1)$	
125 (CR(ILR) = CR(IMP) * CDSP = CR(ILR) * CSINP(2)	
2	X = CA(LL) *SINP2 + CA(MM) * COSP2 - GSIN2PCA(LL) = CA(MM) *SINP2 + CA(LL) * COSP2 + GSIN	27 00 00
(CA(MM) = X CA(LM) = ZERO~ IF(M .EQ. N) GU TE 140	00
	M = M+1	
· · · ·	IF(L .EQ. N-1) GC TO 150 L = L+1 GD TO 55	00
	IF(IND -EQ. 0) GO TO 153 IND = 0GO TO 50	. OC
160	IF (THR .GT. ANFMX) GL TO 45	
	INT EAGENVALUES AND EICENVECTORS	
	LL=0 JC 185 I = 1.5N	
	IQ = IC + N' LL = LL + I JQ = N*(1-2)	
	x = CA(LL)	. 0

•

.

.

• • • •

-

62

•

DD 185 J=I \cdot N JQ = JC + N MM = (J*J+J)/2 Y= CA(MM) IF(X \cdot LE \cdot Y) G 00020000 00020100 00020200 00020200 ... 00020400 00020503 00020503 00020600 00020700 00020700 IF(X .LE. Y) G CA(LL) = Y CA(MM) = X X = Y IF(MV .EQ. 1) GC TC 185 GG TO 185 IF (MV _EG. I) GU DU 180 K=1+N ILR = IQ + K IMR = JQ + K CX = CF(ILR) CR(ILR) = CR(IMR) 180 CR(IMR) = CX 185 CONTINUE 00020900 00021000 00021100 00021200 00021200 00021300 00021400 00021500 00021600 00021700 RETURN 11 -. ... _ ۰. J 4 ----. ,

63

64

•

- SJOB		XXXXX UNWIN			2
1	SUBROUTINE DGM	PRC(A+8+R+N+F+L) A-H+0-Z)		•	
3	DIMENSION A(14 IR=0.DC	4).E(144].R(144)		• · · ·	· · · ·
	IK=-M				•
5 6 7	DD 10 K=1+L IK=IK+M	.		•	· - ,
8	DO 10 J=1,N IR=IR+1			•	·
10 11	JI=J-N IB=IK				
12	R(IR)=0.D0			• •	
13 14	JI=JI+N JI=JI+N	• .	~		~
15 16 1	IU=IB+1 0 R(IR)=R(IR)+A	(JI)*B[IB]	• • • • • • • • • • • • • • •	· .	•
17 2	RETURN END '				•
		م بينها، ماسم م	د. - میوانید با از این میرومونو بردان این میک میرونا این مرد		
11					
на с _с 95 к.		• • • • • • • • • • • • • • • • • • •		-	
• ••	a a ser a construction de la construcción de la construcción de la construcción de la construcción de la constru		te ta mana antana a constructiona antana		** *
tuga cata a ar a	· · · · · · · · ·		والمراجعين المراجع المحمول المراجع والمراجع والمراجع		• • · • •
. .	x		•		
••• •· · · · ·		• • • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		
-					
					-
	······································			• • •	
.	<u> </u>		· · · · · · · · · · · · · · · · · · ·	•	
••••••••••••••••••••••••••••••••••••••	· · · ·			······································	
//w		005538) . CLA35=W		· · · ·	JUA 787 JUE 787
•••				· · · · ·	
•••					
•••				··· · · · · · · · · · · · · · · ·	
•••				· · · · · · · · · · · · · · · · · · ·	
•••				· · · · · · · · · · · · · · · · · · ·	
	ĴĈĠ (UÎOŹ(005538).CLASS=w		· · · · · · · · · · · · · · · · · · ·	JUÈ 787
	ĴĈĠ (UÎOŹ(005538).CLASS=w		· · · · · · · · · · · · · · · · · · ·	JUÈ 787
	ĴĈĠ (UÎOŹ(005538).CLASS=w		· · · · · · · · · · · · · · · · · · ·	JUÈ 787
	ĴĈĠ (UÎOŹ(005538).CLASS=w		······································	JUÈ 787
	ĴĈĠ (UÎOŹ(005538).CLASS=w		· · · · · · · · · · · · · · · · · · ·	JUÈ 787
	ĴĈĠ (UÎOŹ(005538).CLASS=w		· · · · · · · · · · · · · · · · · · ·	JUÈ 787
	ĴĈĠ (UÎOŹ(005538).CLASS=w		· · · · · · · · · · · · · · · · · · ·	JUÈ 787
	JĊĠ (UÎOŻ(005538).CLASS=w		· · · · · · · · · · · · · · · · · · ·	JUÈ 787
	JĊĠ (UÎOŻ(005538).CLASS=w		· · · · · · · · · · · · · · · · · · ·	JUÈ 787
	JĊĠ (UÎOŻ(005538).CLASS=w		· · · · · · · · · · · · · · · · · · ·	JUÈ 787
	ĴĊĠ (UÎOŹ(005538).CLASS=w			JUÈ 787
	ĴĊĠ (UÎOŹ(005538).CLASS=w			JUÈ 787
	ĴĊĠ (UÎOŹ(005538).CLASS=w			JUÈ 787
	ĴĊĠ (UÎOŹ(005538).CLASS=w			JUÈ 787
	JĊĠ (UÎOŻ(005538).CLASS=w			JUÈ 787
	JĊĠ (UÎOŻ(005538).CLASS=w			JUÈ 787
	JĊĠ (UÎOŻ(005538).CLASS=w			JUÈ 787

65

DIAGONALIZATION OF g and A TENSORS

The computer program used to evaluate the principal axes and values of the g and A tensors is shown overleaf. The program forms a traceless tensor and them employs three votations to diagonalize this tensor.

	•••	· · · · · · · · · · · · · · · · · · ·	
		APPENDIX 8	66
, 1 2	20 i	WATEIV '>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	
34		FORMAT (EF 10.5) xZ=Z x	· · · · · · · · · · · · · · · · · · ·
с 7		* X = X * ZY=YZ 2F 1P17 - 3• XX•YY•ZZ • XY• XZ•ZY	•
ب ج	1	₩I=JF(*/57*24 7=-(XX+YY+ZZ)	
10 [.] 11 12	· ;	u= { y x * Y + x x z z + y + z z - y z * * 2 - x Y * * 2 - x Z * * 2 } z = { x x z z * y y z 2 * x x y * Y Z * Z X - Y Z * * 2 * X - X Y * * 2 * Z Z - Z X * * 2 * Y Y } A = { 3 * 2 - P * * 2 }/3 *	
17		A=-A A=-A A=-A	•
19			•
17 18 19		CC=(PP/2.)*[SORT([3./A)**3]] SI=SORT (1CO**2) CS=AES ((0)	
2C 21		PFIEATAN (SI/CS) IF(CC) 5(,51,51	
222		PHI=PI-PHI ALPHA=PHIZE.	•
2456		AA=2.*\$9;**(A/3.) G(1)=AA*(OS (ALPHA-2.*PI*1./3.) G(2)=AA*(OS (ALPHA-2.*PI*2./3.)	
27		G(3)=AA*COS (ALPHA-2.*PI*3./3.) PFI=PHI*57.256	a a su
25		ALPHA=ALFHA*57.296 AS=-P/7.	
31 32 33) مربقہ سیست	PPINT = 1.C(1).G(2).G(3).AS $G(1) = (G(1)-P/3.)$ $G(2) = (G(2)-P/3.)$	
34 35		G(3) = (G(3) - P/3.) OC = 1C L = 1.2	
36 37		D(1)=XY+YZ-ZX#(YY-G(L)) D(3)=ZX#XY-Y2#(XX-G(L))	
38 39 40		D(3)=(xx-G(_))+(YY-G(L))-XY**2 DD=SCPT (D(1)**2+D(2)**2+D(3)**2) U(1+L)=D(1)/DD	
40 41 42		U(2+L)=D(2)/DD U(3+L)=D(3)/DD	na na namu na sa na na
42		PF IN T 1, ((1), G(2), G(3), PHI, ALPHA DO 11 N=1, 3	· · · · · · ·
4 E 4 E 4 7	1 1	$\begin{array}{c} PF(1N,T-1), U((1+N), U((2+N)+U((3+N))) \\ PC-12(1+1+3) \\ DT-12(N+1+3) \\ DT-12(N+1+3) \end{array}$	•
48		SI=200T (1U(N+L)**2) C(N+L)=ATAN (SI/U(N+L))	
50 51	13	C(N+L)=C(N+L)#57+296 CCNTINUE	,
		<pre>VV(1)=U(1.1.) VV(2)=U(2.1.)</pre>	
55	•	TANA = A + S = (VV(P)/VV(1)) ALPHA=ATAN (TANA)	
		IF(VV(1))1C1.1C0.1C0 IF(VV(2))1(4.1(5.1C5	
59 	105	ALPHA=-ALPHA GD TG 107 1F(VV(r))1(2,1(3,1(3	
62 62	102	ALPEA=-180 -/27-296+ALPHA GD TG 107	
	163 107	ALPHA= 180./27.256-ALPHA WHEAGS (VV(2))	-
67 52		TAN 8= SOR T (1 VV(2)**2)/WW HETHA=ATAN (TAN3) IF(VV(2)) 1CE.1CS.109	
عد بن د 7 C	108 109	PETHA= 100./E7.296-36 THA HETHA=DE1HA \$67.296	
7 1 7 2		- XEPHA=AUFHA#E7+256 - 001NT-1+(C(N-L)+N=1+2)+AUPHA+FEJHA	•
7?	12 1	ECREMAT(25X+0F10+5)	
7 E 7 E		STOP END	
2.005	55 54	Y 01214 2.04221 0.00011 0.00755 0.01354	

•

4

•

1 .,

VITA AUCTORIS

I was born in Loughborough, Leicestershire, in 1959. I completed my secondary education at Hind Leys College Shepsled and Burleigh Community College Loughborough. I graduated from Queens' College in the University of Cambridge in 1980 with a B.A. in Physics. At present I am completing requirements towards my MSc at the University of Windsor, Ontario.

PAGE 67 Missing