4 research outputs found

    Thelytokous Parthenogenesis in the Fungus-Gardening Ant Mycocepurus smithii (Hymenoptera: Formicidae)

    Get PDF
    The general prevalence of sexual reproduction over asexual reproduction among organisms testifies to the evolutionary benefits of recombination, such as accelerated adaptation to changing environments and elimination of deleterious mutations. Documented instances of asexual reproduction in groups otherwise dominated by sexual reproduction challenge evolutionary biologists to understand the special circumstances that might confer an advantage to asexual reproductive strategies. Here we report one such instance of asexual reproduction in the ants. We present evidence for obligate thelytoky in the asexual fungus-gardening ant, Mycocepurus smithii, in which queens produce female offspring from unfertilized eggs, workers are sterile, and males appear to be completely absent. Obligate thelytoky is implicated by reproductive physiology of queens, lack of males, absence of mating behavior, and natural history observations. An obligate thelytoky hypothesis is further supported by the absence of evidence indicating sexual reproduction or genetic recombination across the species' extensive distribution range (Mexico-Argentina). Potential conflicting evidence for sexual reproduction in this species derives from three Mycocepurus males reported in the literature, previously regarded as possible males of M. smithii. However, we show here that these specimens represent males of the congeneric species M. obsoletus, and not males of M. smithii. Mycocepurus smithii is unique among ants and among eusocial Hymenoptera, in that males seem to be completely absent and only queens (and not workers) produce diploid offspring via thelytoky. Because colonies consisting only of females can be propagated consecutively in the laboratory, M. smithii could be an adequate study organism a) to test hypotheses of the population-genetic advantages and disadvantages of asexual reproduction in a social organism and b) inform kin conflict theory

    Thelytokous parthenogenesis and its consequences on inbreeding in an ant

    No full text
    Thelytokous parthenogenesis, that is, the production of diploid daughters from unfertilized eggs, may involve various cytological mechanisms, each having a different impact on the genetic structure of populations. Here, we determined the cytological mechanism of thelytokous parthenogenesis and its impact on inbreeding in the ant Cataglyphis cursor, a species where queens use both sexual and asexual reproduction to produce, respectively, workers and new queens. It has been suggested that thelytokous parthenogenesis in C. cursor might have been selected for to face high queen mortality and, originally, to allow workers to replace the queen when she passes away. We first determined the mode of thelytokous parthenogenesis by comparing the rate of transition to homozygosity at four highly polymorphic loci to expectations under the different modes of parthenogenesis. Our data show that thelytoky is achieved through automictic parthenogenesis with central fusion. We then estimated the proportion of colonies headed by worker-produced queens in a natural population. We designed a model linking the observed homozygosity in queens to the proportion of queens produced by workers, based on the assumption that (i) parthenogenesis is automictic with central fusion and (ii) queen lineage is asexually produced, resulting in an increase of the inbreeding over generations, whereas workers are sexually produced and therefore not inbred. Our results indicate that more than 60% of the colonies should be headed by a worker-produced queen, suggesting that queen's lifespan is low in this species.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe
    corecore