7,487 research outputs found

    Quantum algorithm for the Boolean hidden shift problem

    Get PDF
    The hidden shift problem is a natural place to look for new separations between classical and quantum models of computation. One advantage of this problem is its flexibility, since it can be defined for a whole range of functions and a whole range of underlying groups. In a way, this distinguishes it from the hidden subgroup problem where more stringent requirements about the existence of a periodic subgroup have to be made. And yet, the hidden shift problem proves to be rich enough to capture interesting features of problems of algebraic, geometric, and combinatorial flavor. We present a quantum algorithm to identify the hidden shift for any Boolean function. Using Fourier analysis for Boolean functions we relate the time and query complexity of the algorithm to an intrinsic property of the function, namely its minimum influence. We show that for randomly chosen functions the time complexity of the algorithm is polynomial. Based on this we show an average case exponential separation between classical and quantum time complexity. A perhaps interesting aspect of this work is that, while the extremal case of the Boolean hidden shift problem over so-called bent functions can be reduced to a hidden subgroup problem over an abelian group, the more general case studied here does not seem to allow such a reduction.Comment: 10 pages, 1 figur

    Adiabatic quantum computation and quantum phase transitions

    Full text link
    We analyze the ground state entanglement in a quantum adiabatic evolution algorithm designed to solve the NP-complete Exact Cover problem. The entropy of entanglement seems to obey linear and universal scaling at the point where the mass gap becomes small, suggesting that the system passes near a quantum phase transition. Such a large scaling of entanglement suggests that the effective connectivity of the system diverges as the number of qubits goes to infinity and that this algorithm cannot be efficiently simulated by classical means. On the other hand, entanglement in Grover's algorithm is bounded by a constant.Comment: 5 pages, 4 figures, accepted for publication in PR

    Classical and Quantum Annealing in the Median of Three Satisfiability

    Get PDF
    We determine the classical and quantum complexities of a specific ensemble of three-satisfiability problems with a unique satisfying assignment for up to N=100 and N=80 variables, respectively. In the classical limit we employ generalized ensemble techniques and measure the time that a Markovian Monte Carlo process spends in searching classical ground states. In the quantum limit we determine the maximum finite correlation length along a quantum adiabatic trajectory determined by the linear sweep of the adiabatic control parameter in the Hamiltonian composed of the problem Hamiltonian and the constant transverse field Hamiltonian. In the median of our ensemble both complexities diverge exponentially with the number of variables. Hence, standard, conventional adiabatic quantum computation fails to reduce the computational complexity to polynomial. Moreover, the growth-rate constant in the quantum limit is 3.8 times as large as the one in the classical limit, making classical fluctuations more beneficial than quantum fluctuations in ground-state searches

    Universality of Entanglement and Quantum Computation Complexity

    Full text link
    We study the universality of scaling of entanglement in Shor's factoring algorithm and in adiabatic quantum algorithms across a quantum phase transition for both the NP-complete Exact Cover problem as well as the Grover's problem. The analytic result for Shor's algorithm shows a linear scaling of the entropy in terms of the number of qubits, therefore difficulting the possibility of an efficient classical simulation protocol. A similar result is obtained numerically for the quantum adiabatic evolution Exact Cover algorithm, which also shows universality of the quantum phase transition the system evolves nearby. On the other hand, entanglement in Grover's adiabatic algorithm remains a bounded quantity even at the critical point. A classification of scaling of entanglement appears as a natural grading of the computational complexity of simulating quantum phase transitions.Comment: 30 pages, 17 figures, accepted for publication in PR

    The relation between Hardy's non-locality and violation of Bell inequality

    Full text link
    We give a analytic quantitative relation between Hardy's non-locality and Bell operator. We find that Hardy's non-locality is a sufficient condition for violation of Bell inequality, the upper bound of Hardy's non-locality allowed by information causality just correspond to Tsirelson bound of Bell inequality, and the upper bound of Hardy's non-locality allowed by the principle of no-signaling just correspond to the algebraic maximum of Bell operator. Then we study the Cabello's argument of Hardy's non-locality (a generalization of Hardy's argument) and find a similar relation between it and violation of Bell inequality. Finally, we give a simple derivation of the bound of Hardy's non-locality under the constraint of information causality with the aid of above derived relation between Hardy's non-locality and Bell operator, this bound is the main result of a recent work of Ahanj \emph{et al.} [Phys. Rev. A {\bf81}, 032103(2010)].Comment: 4 pages, no figure, minor chang

    Strong nonlocality: A trade-off between states and measurements

    Full text link
    Measurements on entangled quantum states can produce outcomes that are nonlocally correlated. But according to Tsirelson's theorem, there is a quantitative limit on quantum nonlocality. It is interesting to explore what would happen if Tsirelson's bound were violated. To this end, we consider a model that allows arbitrary nonlocal correlations, colloquially referred to as "box world". We show that while box world allows more highly entangled states than quantum theory, measurements in box world are rather limited. As a consequence there is no entanglement swapping, teleportation or dense coding.Comment: 11 pages, 2 figures, very minor change

    On the adiabatic condition and the quantum hitting time of Markov chains

    Full text link
    We present an adiabatic quantum algorithm for the abstract problem of searching marked vertices in a graph, or spatial search. Given a random walk (or Markov chain) PP on a graph with a set of unknown marked vertices, one can define a related absorbing walk PP' where outgoing transitions from marked vertices are replaced by self-loops. We build a Hamiltonian H(s)H(s) from the interpolated Markov chain P(s)=(1s)P+sPP(s)=(1-s)P+sP' and use it in an adiabatic quantum algorithm to drive an initial superposition over all vertices to a superposition over marked vertices. The adiabatic condition implies that for any reversible Markov chain and any set of marked vertices, the running time of the adiabatic algorithm is given by the square root of the classical hitting time. This algorithm therefore demonstrates a novel connection between the adiabatic condition and the classical notion of hitting time of a random walk. It also significantly extends the scope of previous quantum algorithms for this problem, which could only obtain a full quadratic speed-up for state-transitive reversible Markov chains with a unique marked vertex.Comment: 22 page

    Grid tool integration within the eMinerals Project

    Get PDF
    In this article we describe the eMinerals mini grid, which is now running in production mode. Thisis an integration of both compute and data components, the former build upon Condor, PBS and thefunctionality of Globus v2, and the latter being based on the combined use of the Storage ResourceBroker and the CCLRC data portal. We describe how we have integrated the middleware components,and the different facilities provided to the users for submitting jobs within such an environment. We willalso describe additional functionality we found it necessary to provide ourselves

    Statistical Mechanics of the Quantum K-Satisfiability problem

    Full text link
    We study the quantum version of the random KK-Satisfiability problem in the presence of the external magnetic field Γ\Gamma applied in the transverse direction. We derive the replica-symmetric free energy functional within static approximation and the saddle-point equation for the order parameter: the distribution P[h(m)]P[h(m)] of functions of magnetizations. The order parameter is interpreted as the histogram of probability distributions of individual magnetizations. In the limit of zero temperature and small transverse fields, to leading order in Γ\Gamma magnetizations m0m \approx 0 become relevant in addition to purely classical values of m±1m \approx \pm 1. Self-consistency equations for the order parameter are solved numerically using Quasi Monte Carlo method for K=3. It is shown that for an arbitrarily small Γ\Gamma quantum fluctuations destroy the phase transition present in the classical limit Γ=0\Gamma=0, replacing it with a smooth crossover transition. The implications of this result with respect to the expected performance of quantum optimization algorithms via adiabatic evolution are discussed. The replica-symmetric solution of the classical random KK-Satisfiability problem is briefly revisited. It is shown that the phase transition at T=0 predicted by the replica-symmetric theory is of continuous type with atypical critical exponents.Comment: 35 pages, 23 figures; changed abstract, improved discussion in the introduction, added references, corrected typo

    Mg/Ti multilayers: structural, optical and hydrogen absorption properties

    Get PDF
    Mg-Ti alloys have uncommon optical and hydrogen absorbing properties, originating from a "spinodal-like" microstructure with a small degree of chemical short-range order in the atoms distribution. In the present study we artificially engineer short-range order by depositing Pd-capped Mg/Ti multilayers with different periodicities and characterize them both structurally and optically. Notwithstanding the large lattice parameter mismatch between Mg and Ti, the as-deposited metallic multilayers show good structural coherence. Upon exposure to H2 gas a two-step hydrogenation process occurs, with the Ti layers forming the hydride before Mg. From in-situ measurements of the bilayer thickness L at different hydrogen pressures, we observe large out-of-plane expansions of the Mg and Ti layers upon hydrogenation, indicating strong plastic deformations in the films and a consequent shortening of the coherence length. Upon unloading at room temperature in air, hydrogen atoms remain trapped in the Ti layers due to kinetic constraints. Such loading/unloading sequence can be explained in terms of the different thermodynamic properties of hydrogen in Mg and Ti, as shown by diffusion calculations on a model multilayered systems. Absorption isotherms measured by hydrogenography can be interpreted as a result of the elastic clamping arising from strongly bonded Mg/Pd and broken Mg/Ti interfaces
    corecore