Mg-Ti alloys have uncommon optical and hydrogen absorbing properties,
originating from a "spinodal-like" microstructure with a small degree of
chemical short-range order in the atoms distribution. In the present study we
artificially engineer short-range order by depositing Pd-capped Mg/Ti
multilayers with different periodicities and characterize them both
structurally and optically. Notwithstanding the large lattice parameter
mismatch between Mg and Ti, the as-deposited metallic multilayers show good
structural coherence. Upon exposure to H2 gas a two-step hydrogenation process
occurs, with the Ti layers forming the hydride before Mg. From in-situ
measurements of the bilayer thickness L at different hydrogen pressures, we
observe large out-of-plane expansions of the Mg and Ti layers upon
hydrogenation, indicating strong plastic deformations in the films and a
consequent shortening of the coherence length. Upon unloading at room
temperature in air, hydrogen atoms remain trapped in the Ti layers due to
kinetic constraints. Such loading/unloading sequence can be explained in terms
of the different thermodynamic properties of hydrogen in Mg and Ti, as shown by
diffusion calculations on a model multilayered systems. Absorption isotherms
measured by hydrogenography can be interpreted as a result of the elastic
clamping arising from strongly bonded Mg/Pd and broken Mg/Ti interfaces