268 research outputs found
Transfer RNA-derived small RNAs in the cancer transcriptome
The cellular lifetime includes stages such as differentiation, proliferation, division, senescence and apoptosis.These stages are driven by a strictly ordered process of transcription dynamics. Molecular disruption to RNA polymerase assembly, chromatin remodelling and transcription factor binding through to RNA editing, splicing, post-transcriptional regulation and ribosome scanning can result in significant costs arising from genome instability. Cancer development is one example of when such disruption takes place. RNA silencing is a term used to describe the effects of post-transcriptional gene silencing mediated by a diverse set of small RNA molecules. Small RNAs are crucial for regulating gene expression and microguarding genome integrity.RNA silencing studies predominantly focus on small RNAs such as microRNAs, short-interfering RNAs and piwi-interacting RNAs. We describe an emerging renewal of inter-est in a‘larger’small RNA, the transfer RNA (tRNA).Precisely generated tRNA-derived small RNAs, named tRNA halves (tiRNAs) and tRNA fragments (tRFs), have been reported to be abundant with dysregulation associated with cancer. Transfection of tiRNAs inhibits protein translation by displacing eukaryotic initiation factors from messenger RNA (mRNA) and inaugurating stress granule formation.Knockdown of an overexpressed tRF inhibits cancer cell proliferation. Recovery of lacking tRFs prevents cancer metastasis. The dual oncogenic and tumour-suppressive role is typical of functional small RNAs. We review recent reports on tiRNA and tRF discovery and biogenesis, identification and analysis from next-generation sequencing data and a mechanistic animal study to demonstrate their physiological role in cancer biology. We propose tRNA-derived small RNA-mediated RNA silencing is an innate defence mechanism to prevent oncogenic translation. We expect that cancer cells are percipient to their ablated control of transcription and attempt to prevent loss of genome control through RNA silencing
Microguards and micromessengers of the genome
The regulation of gene expression is of fundamental importance to maintain organismal function and integrity and requires a multifaceted and highly ordered sequence of events. The cyclic nature of gene expression is known as ‘transcription dynamics’. Disruption or perturbation of these dynamics can result in significant fitness costs arising from genome instability, accelerated ageing and disease. We review recent research that supports the idea that an important new role for small RNAs, particularly microRNAs (miRNAs), is in protecting the genome against short-term transcriptional fluctuations, in a process we term ‘microguarding’. An additional emerging role for miRNAs is as ‘micromessengers’—through alteration of gene expression in target cells to which they are trafficked within microvesicles. We describe the scant but emerging evidence that miRNAs can be moved between different cells, individuals and even species, to exert biologically significant responses. With these two new roles, miRNAs have the potential to protect against deleterious gene expression variation from perturbation and to themselves perturb the expression of genes in target cells. These interactions between cells will frequently be subject to conflicts of interest when they occur between unrelated cells that lack a coincidence of fitness interests. Hence, there is the potential for miRNAs to represent both a means to resolve conflicts of interest, as well as instigate them. We conclude by exploring this conflict hypothesis, by describing some of the initial evidence consistent with it and proposing new ideas for future research into this exciting topic
ClimBar : An Integrated Approach to Evaluate and Utilize Genetic Diversity
European agriculture anticipates an unprecedented combination of stress factors, production threats and quality needs due to climate change. Various regions of Europe will be affected differently. Barley & wheat domestication, and landrace formation in Europe, were under very different climates than those emerging now. Alleles needed for sustainable, resilient, quality yields in a changed climate are likely not combined in current haplotypes of elite barley cultivars. These alleles are likely found in diverse landraces and wild relatives in the Mediterranean basin and Fertile Crescent -- areas that prefigure expected climate change. New precision, high-throughput phenotyping tools are essential to find trait-allele associations needed for future-climate breeding. Combining genetics, genomics, modelling, molecular biology, morphology, and physiology, ClimBar takes an interdisciplinary approach to develop a strategy for breeding an increased resilience to climate change in barley. ClimBar, a new project under the framework of FACCE ERA-NET Plus Joint Programming Initiative on Climate Smart Agriculture, will identify genome regions, genes, and alleles conferring the traits needed to breed resilient barley varieties adapted to the climatic conditions predicted for 2070 in different European environments. Adapted, resilient germplasm created using ClimBar data, tools and models will provide food-chain security, economic stability and environmental sustainability. Website: http://plen.ku.dk/english/research/plant_soil/breeding/quality/climbar
Involvement of RDR6 in short-range intercellular RNA silencing in Nicotiana benthamiana
In plants, non-cell autonomous RNA silencing spreads between cells and over long distances. Recent work has revealed insight on the genetic and molecular components essential for cell-to-cell movement of RNA silencing in Arabidopsis. Using a local RNA silencing assay, we report on a distinct mechanism that may govern the short-range (6–10 cell) trafficking of virus-induced RNA silencing from epidermal to neighbouring palisade and spongy parenchyma cells in Nicotiana benthamiana. This process involves a previously unrecognised function of the RNA-dependent RNA polymerase 6 (RDR6) gene. Our data suggest that plants may have evolved distinct genetic controls in intercellular RNA silencing among different types of cells
Small RNA analysis in Sindbis virus infected human HEK293 cells
In contrast to the defence mechanism of RNA interference (RNAi) in plants and invertebrates, its role in the innate response to virus infection of mammals is a matter of debate. Since RNAi has a well-established role in controlling infection of the alphavirus Sindbis virus (SINV) in insects, we have used this virus to investigate the role of RNAi in SINV infection of human cells
Small RNA Profile in Moso Bamboo Root and Leaf Obtained by High Definition Adapters
Moso bamboo (Phyllostachy heterocycla cv. pubescens L.) is an economically important fast-growing tree. In order to gain better understanding of gene expression regulation in this important species we used next generation sequencing to profile small RNAs in leaf and roots of young seedlings. Since standard kits to produce cDNA of small RNAs are biased for certain small RNAs, we used High Definition adapters that reduce ligation bias. We identified and experimentally validated five new microRNAs and a few other small non-coding RNAs that were not microRNAs. The biological implication of microRNA expression levels and targets of microRNAs are discussed
Assessment of genetically modified maize MIR604 for renewal authorisation under Regulation (EC) No 1829/2003 (application EFSA‐GMO‐RX‐013)
Following the submission of application EFSA‐GMO‐RX‐013 under Regulation (EC) No 1829/2003 from Syngenta Crop Protection NV/SA, the EFSA Panel on Genetically Modified Organisms (GMO) was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the insect‐resistant genetically modified maize MIR604, for food and feed uses, excluding cultivation within the EU. The data received in the context of this renewal application contained post‐market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses, and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequence of the event in maize MIR604 considered for renewal is identical to the corrected sequence of the originally assessed event, the GMO Panel concludes that there is no evidence in renewal application EFSA‐GMO‐RX‐013 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on maize MIR604
Assessment of genetically modified maize MON 88017 for renewal authorisation under Regulation (EC) No 1829/2003 (application EFSA‐GMO‐RX‐014)
Following the submission of application EFSA‐GMO‐RX‐014 under Regulation (EC) No 1829/2003 from Monsanto Company the Panel on Genetically Modified Organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the insect‐resistant and herbicide‐tolerant genetically modified maize MON 88017, for food and feed uses, excluding cultivation within the EU. The data received in the context of this renewal application contained post‐market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses, and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequence of the event in maize MON 88017 considered for renewal is identical to the sequence of the originally assessed event, the GMO Panel concludes that there is no evidence in renewal application EFSA‐GMO‐RX‐014 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on maize MON 88017
Assessment of genetically modified oilseed rape GT73 for renewal authorisation under Regulation (EC) No 1829/2003 (application EFSA‐GMO‐RX‐002)
Following the submission of application EFSA‐GMO‐RX‐002 under Regulation (EC) No 1829/2003 from Monsanto Company, the Panel on Genetically Modified Organisms of EFSA (GMO) was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the herbicide‐tolerant genetically modified oilseed rape GT73. The data received in the context of this renewal application contained post‐market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequence of the event in oilseed rape GT73 considered for renewal of authorisation is identical to the sequence of the originally assessed event, the GMO Panel concludes that there is no evidence in renewal application EFSA‐GMO‐RX‐002 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on oilseed rape GT73
Assessment of genetically modified maize MON 89034 for renewal authorisation under Regulation (EC) No 1829/2003 (application EFSA-GMO-RX-015)
Following the submission of application EFSA-GMO-RX-015 under Regulation (EC) No 1829/2003 from Bayer Agriculture BVBA, the EFSA Panel on Genetically Modified Organisms (GMO Panel) was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the insect-resistant genetically modified maize MON 89034, for food and feed uses, excluding cultivation within the EU. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequence of the event in maize MON 89034 considered for renewal is identical to the sequence of the originally assessed event, the GMO Panel concludes that there is no evidence in renewal application EFSA-GMO-RX-015 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on maize MON 89034
- …