175 research outputs found

    Nutrient Availability in Tropical Rain Forests: The Paradigm of Phosphorus Limitation

    Get PDF
    Abstract A long-standing paradigm in tropical ecology is that phosphorus (P) availability limits the productivity of most lowland forests, with the largest pool of plant-available P resident in biomass. Evidence that P limits components of productivity is particularly strong for sites in Panama and the Amazon basin. Analyses of forest communities in Panama also show that tree species distributions are strongly affected by P availability at the regional scale, but that their local distributions in a single site on Barro Colorado Island (BCI) are as frequently correlated with base cations as with P. Traits associated with species sensitivity to P availability require more detailed exploration, but appear to show little similarity with those associated with N limitation in temperate forests. Recent research indicates that a large fraction of P in tropical forests exists as organic and microbial P in the soil; plant adaptations to access organic P, including the synthesis of phosphatase enzymes, likely represent critical adaptations to low P environments. Plants also cope with low P availability through increases in P use-efficiency resulting from increased retention time of P in biomass and decreased tissue P concentration. Although foliar P responds strongly to P addition, we show here that foliar P and N:P are highly variable within communities, and at BCI correlate with regional species distributional affinity for P. An improved understanding of P limitation, and in particular the plasticity of responses to P availability, will be critical to predicting community and ecosystem responses of tropical forests to climate change

    Lianas Reduce Community-level Canopy Tree Reproduction in a Panamanian Forest

    Get PDF
    Lianas are a key component of tropical forests, where they compete intensely with trees, reducing tree recruitment, growth and survival. One of the most important potential outcomes of liana competition is the reduction of tree reproduction; however, no previous study has experimentally determined the effects of lianas on tree reproduction beyond a single tree species. We used a large‐scale liana removal experiment to quantify the effect of lianas on community‐level canopy and understorey tree and palm reproduction. In 2011, we removed lianas from eight 6,400‐m2 plots (eight plots served as controls) and surveyed understorey tree reproduction in 2012, canopy tree and palm reproduction in 2013, and a second census of all plants in 2016. We found that lianas significantly reduced canopy tree community flowering and fruiting after liana removal. Two years after liana removal, the number of canopy trees with fruits was 173% higher, fruiting individuals had 50% more of their canopy covered by fruits and the number of tree species with fruits was 169% higher than in control plots where lianas were present. Five years after liana removal, the number of canopy trees with fruits was 150% higher, fruiting individuals had 31% more of their canopy covered by fruits and the number of tree species with fruits was 109% higher than in unmanipulated control plots. Liana removal had only a slight positive effect on palms and on understorey tree flower and fruit production, even though understorey light levels had increased 20% following liana cutting. Synthesis. Our findings provide the first experimental demonstration that competition from lianas significantly reduces community‐level canopy tree reproduction. Reduced reproduction increases canopy tree seed and dispersal limitations, and may interfere with deterministic mechanisms thought to maintain tropical canopy tree species diversity, as well as reduce food availability to many animal species. Because lianas are increasing in abundance in many neotropical forests, the effects of lianas on tree reproduction will likely increase, and if the effects of lianas on tree reproduction vary with tree species identity, lianas ultimately could have a destabilizing effect on both tree and animal population dynamics

    Habitat filtering across tree life stages in tropical forest communities

    Get PDF
    Tropical tree communities are shaped by local-scale habitat heterogeneity in the form of topographic and edaphic variation, but the life-history stage at which habitat associations develop remains poorly understood. This is due, in part, to the fact that previous studies have not accounted for the widely disparate sample sizes number of stems that result when trees are divided into size classes. We demonstrate that the observed habitat structuring of a community is directly related to the number of individuals in the community. We then compare the relative importance of habitat heterogeneity to tree community structure for saplings, juveniles and adult trees within seven large 24-50 ha tropical forest dynamics plots while controlling for sample size. Changes in habitat structuring through tree life stages were small and inconsistent among life stages and study sites. Where found, these differences were an order of magnitude smaller than the findings of previous studies that did not control for sample size. Moreover, community structure and composition were very similar among tree sub-communities of different life stages. We conclude that the structure of these tropical tree communities is established by the time trees are large enough to be included in the census 1 cm diameter at breast height, which indicates that habitat filtering occurs during earlier life stages. © 2013 The Authors Published by the Royal Society. All rights reserved

    Phylogenetic turnover along local environmental gradients in tropical forest communities

    Get PDF
    © 2016, Springer-Verlag Berlin Heidelberg. While the importance of local-scale habitat niches in shaping tree species turnover along environmental gradients in tropical forests is well appreciated, relatively little is known about the influence of phylogenetic signal in species’ habitat niches in shaping local community structure. We used detailed maps of the soil resource and topographic variation within eight 24–50 ha tropical forest plots combined with species phylogenies created from the APG III phylogeny to examine how phylogenetic beta diversity (indicating the degree of phylogenetic similarity of two communities) was related to environmental gradients within tropical tree communities. Using distance-based redundancy analysis we found that phylogenetic beta diversity, expressed as either nearest neighbor distance or mean pairwise distance, was significantly related to both soil and topographic variation in all study sites. In general, more phylogenetic beta diversity within a forest plot was explained by environmental variables this was expressed as nearest neighbor distance versus mean pairwise distance (3.0–10.3 % and 0.4–8.8 % of variation explained among plots, respectively), and more variation was explained by soil resource variables than topographic variables using either phylogenetic beta diversity metric. We also found that patterns of phylogenetic beta diversity expressed as nearest neighbor distance were consistent with previously observed patterns of niche similarity among congeneric species pairs in these plots. These results indicate the importance of phylogenetic signal in local habitat niches in shaping the phylogenetic structure of tropical tree communities, especially at the level of close phylogenetic neighbors, where similarity in habitat niches is most strongly preserved

    Soil resources and topography shape local tree community structure in tropical forests

    Get PDF
    Both habitat filtering and dispersal limitation influence the compositional structure of forest communities, but previous studies examining the relative contributions of these processes with variation partitioning have primarily used topography to represent the influence of the environment. Here, we bring together data on both topography and soil resource variation within eight large (24-50 ha) tropical forest plots, and use variation partitioning to decompose community compositional variation into fractions explained by spatial, soil resource and topographic variables. Both soil resources and topography account for significant and approximately equal variation in tree community composition (9-34% and 5-29%, respectively), and all environmental variables together explain 13-39% of compositional variation within a plot. A large fraction of variation (19-37%) was spatially structured, yet unexplained by the environment, suggesting an important role for dispersal processes and unmeasured environmental variables. For the majority of sites, adding soil resource variables to topography nearly doubled the inferred role of habitat filtering, accounting for variation in compositional structure that would previously have been attributable to dispersal. Our results, illustrated using a new graphical depiction of community structure within these plots, demonstrate the importance of small-scale environmental variation in shaping local community structure in diverse tropical forests around the globe. © 2012 The Author(s) Published by the Royal Society. All rights reserved
    corecore