12 research outputs found

    Factors associated with discharge destination from acute care after moderate-to-severe traumatic injuries in Norway: a prospective population-based study

    Get PDF
    Background - Previous studies have demonstrated that the trauma population has needs for rehabilitation services that are best provided in a continuous and coordinated way. The discharge destination after acute care is the second step to ensuring quality of care. There is a lack of knowledge regarding the factors associated with the discharge destination for the overall trauma population. This paper aims to identify sociodemographic, geographical, and injury-related factors associated with discharge destination following acute care at trauma centers for patients with moderate-to-severe traumatic injuries. Methods - A multicenter, population-based, prospective study was conducted with patients of all ages with traumatic injury [New Injury Severity Score (NISS) > 9] admitted within 72 h after the injury to regional trauma centers in southeastern and northern Norway over a 1-year period (2020). Results - In total, 601 patients were included; a majority (76%) sustained severe injuries, and 22% were discharged directly to specialized rehabilitation. Children were primarily discharged home, and most of the patients ≥ 65 years to their local hospital. Depending on the centrality of their residence [Norwegian Centrality Index (NCI) 1–6, where 1 is most central], we found that patients residing in NCI 3–4 and 5–6 areas sustained more severe injuries than patients residing in NCI 1–2 areas. An increase in the NISS, number of injuries, or a spinal injury with an Abbreviated Injury Scale (AIS) ≥ 3 was associated with discharge to local hospitals and specialized rehabilitation than to home. Patients with an AIS ≥ 3 head injury (RRR 6.1, 95% Confidence interval 2.80–13.38) were significantly more likely to be discharged to specialized rehabilitation than patients with a less severe head injury. Age  Conclusions - Two-thirds of the patients sustained severe traumatic injury, and 22% were discharged directly to specialized rehabilitation. Age, centrality of the residence, preinjury comorbidity, injury severity, length of hospital stay, and the number and specific types of injuries were factors that had the greatest influence on discharge destination

    Functional Outcomes at 6 and 12 Months Post-Injury in a Trauma Centre Population with Moderate-to-Severe Traumatic Injuries

    Get PDF
    This study aims to evaluate the global functional outcomes after moderate-to-severe traumatic injury at 6 and 12 months and to examine the sociodemographic and injury-related factors that predict these outcomes. A prospective cohort study was conducted in which trauma patients of all ages with a New Injury Severity Score > 9 who were discharged alive from two regional trauma centres in Norway over a one-year period (2020) were included. The Glasgow Outcome Scale Extended (GOSE) score was used to analyse the functional outcomes. Regression analyses were performed to investigate the predictors of the GOSE score. Follow-up assessments were obtained from approximately 85% of the 601 included patients at both time points. The mean (SD) GOSE score was 6.1 (1.6) at 6 months and 6.4 (1.6) at 12 months, which corresponds to an upper-moderate disability. One-half of the patients had a persistent disability at 12 months post-injury. The statistically significant predictors of a low GOSE score at both time points were more pre-injury comorbidity, a higher number of injuries, and higher estimated rehabilitation needs, whereas a thorax injury with an Abbreviated Injury Scale ≥ 3 predicted higher GOSE scores. A high Glasgow Coma Scale score at admission predicted a higher GOSE score at 6 months. This study strengthens the evidence base for the functional outcomes and predictors in this population

    Rehabilitation Needs, Service Provision, and Costs in the First Year Following Traumatic Injuries: Protocol for a Prospective Cohort Study

    Get PDF
    Background: Traumatic injuries, defined as physical injuries with sudden onset, are a major public health problem worldwide. There is a paucity of knowledge regarding rehabilitation needs and service provision for patients with moderate and major trauma, even if rehabilitation research on a spectrum of specific injuries is available. Objective: This study aims to describe the prevalence of rehabilitation needs, the provided services, and functional outcomes across all age groups, levels of injury severity, and geographical regions in the first year after trauma. Direct and indirect costs of rehabilitation provision will also be assessed. The overarching aim is to better understand where to target future efforts. Methods: This is a population-based prospective follow-up study. It encompasses patients of all ages with moderate and severe acute traumatic injury (New Injury Severity Score >9) admitted to the regional trauma centers in southeastern and northern Norway over a 1-year period (2020). Sociodemographic and injury data will be collected. Upon hospital discharge, rehabilitation physicians estimate rehabilitation needs. Rehabilitation needs are assessed by the Rehabilitation Complexity Scale Extended–Trauma (RCS E–Trauma; specialized inpatient rehabilitation), Needs and Provision Complexity Scale (NPCS; community-based rehabilitation and health care service delivery), and Family Needs Questionnaire–Pediatric Version (FNQ-P). Patients, family caregivers, or both will complete questionnaires at 6- and 12-month follow-ups, which are supplemented by telephone interviews. Data on functioning and disability, mental health, health-related quality of life measured by the EuroQol Questionnaire (EQ-5D), and needs and provision of rehabilitation and health care services are collected by validated outcome measures. Unmet needs are represented by the discrepancies between the estimates of the RCS E–Trauma and NPCS at the time of a patient’s discharge and the rehabilitation services the patient has actually received. Formal service provision (including admission to inpatient- or outpatient-based rehabilitation), informal care, and associated costs will be collected. Results: The project was funded in December 2018 and approved by the Regional Committee for Medical and Health Research Ethics in October 2019. Inclusion of patients began at Oslo University Hospital on January 1, 2020, and at the University Hospital of North Norway on February 1, 2020. As of February 2021, we have enrolled 612 patients, and for 286 patients the 6-month follow-up has been completed. Papers will be drafted for publication throughout 2021 and 2022. Conclusions: This study will improve our understanding of existing service provision, the gaps between needs and services, and the associated costs for treating patients with moderate and major trauma. This may guide the improvement of rehabilitation and health care resource planning and allocation

    Epidemiology of traumatic brain injury in children 15 years and younger in South-Eastern Norway in 2015–16. Implications for prevention and follow-up needs

    No full text
    Objective This retrospective study aimed to describe the volume, severity, and injury mechanism of all hospital-admitted pediatric traumatic brain injury (pTBI) at Oslo University Hospital (OUH), emphasizing consequences for prevention and factors indicating a need for follow-up programs. Method Data were extracted from the OUH Trauma registry on 176 children, 0–15 years old, admitted to OUH in 2015 and 2016 with a pTBI diagnosis. The dataset contains demographic data, injury mechanism, type, and severity (Glasgow coma scale, GCS; abbreviated injury scale, AIS; injury severity score, ISS), ICD-10 diagnosis codes, level of treatment, and destination of discharge. Results 79.5% had mild, 9% moderate, and 11.4% severe TBI. The incidence of hospital-treated pTBI in Oslo was 29 per 100,000 per year. The boy: girl ratio was 1.9:1, but in the young teenage group (14–15 years), the ratio was 1:1. Intracranial injury (ICI) identified on CT/MRI was associated with extended hospital stays, with a median of 6 days compared to 1 day for patients without ICI. 27% of the patients assessed as mild TBI at admission had ICI. Children below eight years of age had a higher incidence of moderate and severe ICI from trauma (53% v.s. 28% in children ≥ eight years). Conclusion The injury characteristics of hospital-treated pTBI are in line with other European countries, but we find the boy-girl ratio different as young teenage girls seem to be catching up with the boys. ICI and length of stay should be considered when deciding which patients need follow-up and rehabilitation

    Frequency of fatigue and its changes in the first 6 months after traumatic brain injury: results from the CENTER-TBI study

    No full text
    Abstract Background Fatigue is one of the most commonly reported subjective symptoms following traumatic brain injury (TBI). The aims were to assess frequency of fatigue over the first 6 months after TBI, and examine whether fatigue changes could be predicted by demographic characteristics, injury severity and comorbidities. Methods Patients with acute TBI admitted to 65 trauma centers were enrolled in the study Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI). Subjective fatigue was measured by single item on the Rivermead Post-Concussion Symptoms Questionnaire (RPQ), administered at baseline, three and 6 months postinjury. Patients were categorized by clinical care pathway: admitted to an emergency room (ER), a ward (ADM) or an intensive care unit (ICU). Injury severity, preinjury somatic- and psychiatric conditions, depressive and sleep problems were registered at baseline. For prediction of fatigue changes, descriptive statistics and mixed effect logistic regression analysis are reported. Results Fatigue was experienced by 47% of patients at baseline, 48% at 3 months and 46% at 6 months. Patients admitted to ICU had a higher probability of experiencing fatigue than those in ER and ADM strata. Females and individuals with lower age, higher education, more severe intracranial injury, preinjury somatic and psychiatric conditions, sleep disturbance and feeling depressed postinjury had a higher probability of fatigue. Conclusion A high and stable frequency of fatigue was found during the first 6 months after TBI. Specific socio-demographic factors, comorbidities and injury severity characteristics were predictors of fatigue in this study

    Frequency of fatigue and its changes in the first 6 months after traumatic brain injury: results from the CENTER-TBI study

    No full text
    Background Fatigue is one of the most commonly reported subjective symptoms following traumatic brain injury (TBI). The aims were to assess frequency of fatigue over the first 6 months after TBI, and examine whether fatigue changes could be predicted by demographic characteristics, injury severity and comorbidities. Methods Patients with acute TBI admitted to 65 trauma centers were enrolled in the study Collaborative European NeuroTrauma Effectiveness Research in TBI (CENTER-TBI). Subjective fatigue was measured by single item on the Rivermead Post-Concussion Symptoms Questionnaire (RPQ), administered at baseline, three and 6 months postinjury. Patients were categorized by clinical care pathway: admitted to an emergency room (ER), a ward (ADM) or an intensive care unit (ICU). Injury severity, preinjury somatic- and psychiatric conditions, depressive and sleep problems were registered at baseline. For prediction of fatigue changes, descriptive statistics and mixed effect logistic regression analysis are reported. Results Fatigue was experienced by 47% of patients at baseline, 48% at 3 months and 46% at 6 months. Patients admitted to ICU had a higher probability of experiencing fatigue than those in ER and ADM strata. Females and individuals with lower age, higher education, more severe intracranial injury, preinjury somatic and psychiatric conditions, sleep disturbance and feeling depressed postinjury had a higher probability of fatigue. Conclusion A high and stable frequency of fatigue was found during the first 6 months after TBI. Specific socio-demographic factors, comorbidities and injury severity characteristics were predictors of fatigue in this study
    corecore