19,418 research outputs found
Interplay between Order and Disorder in the High Performance of Amorphous Transparent Conducting Oxides
Atomistic origins of the phase transition mechanism in Ge2Sb2Te5
Combined static and molecular dynamics first-principles calculations are used
to identify a direct structural link between the metastable crystalline and
amorphous phases of Ge2Sb2Te5. We find that the phase transition is driven by
the displacement of Ge atoms along the rocksalt [111] direction from the
stable-octahedron to high-energy-unstable tetrahedron sites close to the
intrinsic vacancy regions, which give rise to the formation of local 4-fold
coordinated motifs. Our analyses suggest that the high figures of merit of
Ge2Sb2Te5 are achieved from the optimal combination of intrinsic vacancies
provided by Sb2Te3 and the instability of the tetrahedron sites provided by
GeTe
Spontaneous Octahedral Tilting in the Cubic Inorganic Caesium Halide Perovskites CsSnX and CsPbX (X = F, Cl, Br, I)
The local crystal structures of many perovskite-structured materials deviate
from the average space group symmetry. We demonstrate, from lattice-dynamics
calculations based on quantum chemical force constants, that all the
caesium-lead and caesium-tin halide perovskites exhibit vibrational
instabilities associated with octahedral titling in their high-temperature
cubic phase. Anharmonic double-well potentials are found for zone-boundary
phonon modes in all compounds with barriers ranging from 108 to 512 meV. The
well depth is correlated with the tolerance factor and the chemistry of the
composition, but is not proportional to the imaginary harmonic phonon
frequency. We provide quantitative insights into the thermodynamic driving
forces and distinguish between dynamic and static disorder based on the
potential-energy landscape. A positive band gap deformation (spectral
blueshift) accompanies the structural distortion, with implications for
understanding the performance of these materials in applications areas
including solar cells and light-emitting diodes
Eotaxin: a potent eosinophil chemoattractant cytokine detected in a guinea pig model of allergic airways inflammation.
Eosinophil accumulation is a prominent feature of allergic inflammatory reactions, such as those occurring in the lung of the allergic asthmatic, but the endogenous chemoattractants involved have not been identified. We have investigated this in an established model of allergic inflammation, using in vivo systems both to generate and assay relevant activity. Bronchoalveolar lavage (BAL) fluid was taken from sensitized guinea pigs at intervals after aerosol challenge with ovalbumin. BAL fluid was injected intradermally in unsensitized assay guinea pigs and the accumulation of intravenously injected 111In-eosinophils was measured. Activity was detected at 30 min after allergen challenge, peaking from 3 to 6 h and declining to low levels by 24 h. 3-h BAL fluid was purified using high performance liquid chromatography techniques in conjunction with the skin assay. Microsequencing revealed a novel protein from the C-C branch of the platelet factor 4 superfamily of chemotactic cytokines. The protein, eotaxin, exhibits homology of 53% with human MCP-1, 44% with guinea pig MCP-1, 31% with human MIP-1α, and 26% with human RANTES. Laser desorption time of flight mass analysis gave four different signals (8.15, 8.38, 8.81, and 9.03 kD), probably reflecting differential O-glycosylation. Eotaxin was highly potent, inducing substantial 111In-eosinophil accumulation at a 1-2-pmol dose in the skin, but did not induce significant 111In-neutrophil accumulation. Eotaxin was a potent stimulator of both guinea pig and human eosinophils in vitro. Human recombinant RANTES, MIP-1α, and MCP-1 were all inactive in inducing 111In-eosinophil accumulation in guinea pig skin; however, evidence was obtained that eotaxin shares a binding site with RANTES on guinea pig eosinophils. This is the first description of a potent eosinophil chemoattractant cytokine generated in vivo and suggests the possibility that similar molecules may be important in the human asthmatic lung
Evaluating the design and reporting of pragmatic trials in osteoarthritis research
Objectives. Among the challenges in health research is translating interventions from controlled experimental settings to clinical and community settings where chronic disease is managed daily. Pragmatic trials offer a method for testing interventions in real-world settings but are seldom used in OA research. The aim of this study was to evaluate the literature on pragmatic trials in OA research up to August 2016 in order to identify strengths and weaknesses in the design and reporting of these trials.
Methods. We used established guidelines to assess the degree to which 61 OA studies complied with pragmatic trial design and reporting. We assessed design according to the pragmatic–explanatory continuum indicator summary and reporting according to the pragmatic trials extension of the CONsolidated Standards of Reporting Trials guidelines.
Results. None of the pragmatic trials met all 11 criteria evaluated and most of the trials met between 5 and 8 of the criteria. Criteria most often unmet pertained to practitioner expertise (by requiring specialists) and criteria most often met pertained to primary outcome analysis (by using intention-to-treat analysis).
Conclusion. Our results suggest a lack of highly pragmatic trials in OA research. We identify this as a point of opportunity to improve research translation, since optimizing the design and reporting of pragmatic trials can facilitate implementation of evidence-based interventions for OA care
Are bisphosphonates effective in the treatment of osteoarthritis pain? A meta-analysis and systematic review.
Osteoarthritis (OA) is the most common form of arthritis worldwide. Pain and reduced function are the main symptoms in this prevalent disease. There are currently no treatments for OA that modify disease progression; therefore analgesic drugs and joint replacement for larger joints are the standard of care. In light of several recent studies reporting the use of bisphosphonates for OA treatment, our work aimed to evaluate published literature to assess the effectiveness of bisphosphonates in OA treatment
High-Resolution Spectroscopic Study of Extremely Metal-Poor Star Candidates from the SkyMapper Survey
The SkyMapper Southern Sky Survey is carrying out a search for the most
metal-poor stars in the Galaxy. It identifies candidates by way of its unique
filter set that allows for estimation of stellar atmospheric parameters. The
set includes a narrow filter centered on the Ca II K 3933A line, enabling a
robust estimate of stellar metallicity. Promising candidates are then confirmed
with spectroscopy. We present the analysis of Magellan-MIKE high-resolution
spectroscopy of 122 metal-poor stars found by SkyMapper in the first two years
of commissioning observations. 41 stars have [Fe/H] <= -3.0. Nine have [Fe/H]
<= -3.5, with three at [Fe/H] ~ -4. A 1D LTE abundance analysis of the elements
Li, C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Co, Ni, Zn, Sr, Ba and Eu shows
these stars have [X/Fe] ratios typical of other halo stars. One star with low
[X/Fe]
[X/Fe values appears to be "Fe-enhanced," while another star has an extremely
large [Sr/Ba] ratio: >2. Only one other star is known to have a comparable
value. Seven stars are "CEMP-no" stars ([C/Fe] > 0.7, [Ba/Fe] < 0). 21 stars
exhibit mild r-process element enhancements (0.3 <=[Eu/Fe] < 1.0), while four
stars have [Eu/Fe] >= 1.0. These results demonstrate the ability to identify
extremely metal-poor stars from SkyMapper photometry, pointing to increased
sample sizes and a better characterization of the metal-poor tail of the halo
metallicity distribution function in the future.Comment: Minor corrections to text, missing data added to Tables 3 and 4;
updated to match published version. Complete tables included in sourc
Large Deviations for Stochastic Evolution Equations with Small Multiplicative Noise
The Freidlin-Wentzell large deviation principle is established for the
distributions of stochastic evolution equations with general monotone drift and
small multiplicative noise. As examples, the main results are applied to derive
the large deviation principle for different types of SPDE such as stochastic
reaction-diffusion equations, stochastic porous media equations and fast
diffusion equations, and the stochastic p-Laplace equation in Hilbert space.
The weak convergence approach is employed in the proof to establish the Laplace
principle, which is equivalent to the large deviation principle in our
framework.Comment: 31 pages, published in Appl. Math. Opti
- …
