180 research outputs found

    New Insight into Intrachromosomal Deletions Induced by Chrysotile in the gpt delta Transgenic Mutation Assay

    Get PDF
    BACKGROUND: Genotoxicity is often a prerequisite to the development of malignancy. Considerable evidence has shown that exposure to asbestos fibers results in the generation of chromosomal aberrations and multilocus mutations using various in vitro approaches. However, there is less evidence to demonstrate the contribution of deletions to the mutagenicity of asbestos fibers in vivo. OBJECTIVES: In the present study, we investigated the mutant fractions and the patterns induced by chrysotile fibers in gpt delta transgenic mouse primary embryo fibroblasts (MEFs) and compared the results obtained with hydrogen peroxide (H(2)O(2)) in an attempt to illustrate the role of oxyradicals in fiber mutagenesis. RESULTS: Chrysotile fibers induced a dose-dependent increase in mutation yield at the redBA/gam loci in transgenic MEF cells. The number of λ mutants losing both redBA and gam loci induced by chrysotiles at a dose of 1 μg/cm(2) increased by > 5-fold relative to nontreated controls (p < 0.005). Mutation spectra analyses showed that the ratio of λ mutants losing the redBA/gam region induced by chrysotiles was similar to those induced by equitoxic doses of H(2)O(2). Moreover, treatment with catalase abrogated the accumulation of γ-H2AX, a biomarker of DNA double-strand breaks, induced by chrysotile fibers. CONCLUSIONS: Our results provide novel information on the frequencies and types of mutations induced by asbestos fibers in the gpt delta transgenic mouse mutagenic assay, which shows great promise for evaluating fiber/particle mutagenicity in vivo

    Benzo[a]pyrene, Aflatoxine B1 and Acetaldehyde Mutational Patterns in TP53 Gene Using a Functional Assay: Relevance to Human Cancer Aetiology

    Get PDF
    Mutations in the TP53 gene are the most common alterations in human tumours. TP53 mutational patterns have sometimes been linked to carcinogen exposure. In hepatocellular carcinoma, a specific G>T transversion on codon 249 is classically described as a fingerprint of aflatoxin B1 exposure. Likewise G>T transversions in codons 157 and 158 have been related to tobacco exposure in human lung cancers. However, controversies remain about the interpretation of TP53 mutational pattern in tumours as the fingerprint of genotoxin exposure. By using a functional assay, the Functional Analysis of Separated Alleles in Yeast (FASAY), the present study depicts the mutational pattern of TP53 in normal human fibroblasts after in vitro exposure to well-known carcinogens: benzo[a]pyrene, aflatoxin B1 and acetaldehyde. These in vitro patterns of mutations were then compared to those found in human tumours by using the IARC database of TP53 mutations. The results show that the TP53 mutational patterns found in human tumours can be only partly ascribed to genotoxin exposure. A complex interplay between the functional impact of the mutations on p53 phenotype and the cancer natural history may affect these patterns. However, our results strongly support that genotoxins exposure plays a major role in the aetiology of the considered cancers

    Direct Binding of a Hepatitis C Virus Inhibitor to the Viral Capsid Protein

    Get PDF
    Over 130 million people are infected chronically with hepatitis C virus (HCV), which, together with HBV, is the leading cause of liver disease. Novel small molecule inhibitors of Hepatitis C virus (HCV) are needed to complement or replace current treatments based on pegylated interferon and ribavirin, which are only partially successful and plagued with side-effects. Assembly of the virion is initiated by the oligomerization of core, the capsid protein, followed by the interaction with NS5A and other HCV proteins. By screening for inhibitors of core dimerization, we previously discovered peptides and drug-like compounds that disrupt interactions between core and other HCV proteins, NS3 and NS5A, and block HCV production. Here we report that a biotinylated derivative of SL209, a prototype small molecule inhibitor of core dimerization (IC50 of 2.80 µM) that inhibits HCV production with an EC50 of 3.20 µM, is capable of penetrating HCV-infected cells and tracking with core. Interaction between the inhibitors, core and other viral proteins was demonstrated by SL209–mediated affinity-isolation of HCV proteins from lysates of infected cells, or of the corresponding recombinant HCV proteins. SL209-like inhibitors of HCV core may form the basis of novel treatments of Hepatitis C in combination with other target-specific HCV drugs such as inhibitors of the NS3 protease, the NS5B polymerase, or the NS5A regulatory protein. More generally, our work supports the hypothesis that inhibitors of viral capsid formation might constitute a new class of potent antiviral agents, as was recently also shown for HIV capsid inhibitors

    Potential role of p53 on metallothionein induction in human epithelial breast cancer cells

    Get PDF
    The expression and induction of metallothionein has been associated with protection against oxidative stress and apoptosis. This study examines the effect of tumour suppressor protein p53 on metallothionein expression following CdCl2 treatment in eight human epithelial breast cancer cell lines differing in p53 and oestrogen-receptor status. Cells were treated with 10 μM CdCl2 for 24 h and metallothionein protein levels were measured by cadmium binding assay. MCF7 cells which are p53-positive (p53+) and oestrogen-receptor-positive showed a large induction in metallothionein synthesis by 10.79±1.36-fold. Other breast cancer cell lines which are p53-negative (p53−) and oestrogen-receptor-negative or weakly oestrogen-receptor-positive showed a small induction ranging from 1.40±0.10 to 3.65±0.30-fold. RT–PCR analysis showed an induction of metallothionein mRNA in MCF7 cells by about 1.61±0.08-fold, while in HCC1806 cells (p53−, oestrogen-receptor-negative) by 1.11±0.13-fold, and in MDA-MB-231 (p53−, oestrogen-receptor-negative) by 1.25±0.06-fold. Metallothionein localisation was determined by immunohistochemical staining. Prior to metal treatment, metallothionein was localised mainly in the cytoplasm of MCF7 and MDA-MB-231 cells. After treatment with 10 μM CdCl2 for 24 h, MCF7 cells showed intense nuclear and cytoplasmic staining for metallothionein, while MDA-MB-231 cells showed staining in the cytoplasm with weak nuclear staining. Apoptosis induced by 10–40 μM CdCl2 at time points between 4 and 48 h was examined with TUNEL assay. In MCF7 cells, apoptosis increased with higher concentrations of CdCl2, it peaked at 6–8 h and appeared again at 48 h for all concentrations of CdCl2 tested. In MDA-MB-231 cells, apoptosis remained at low levels for 10–40 μM CdCl2 at all time points. Studies on cadmium uptake showed similar uptake and accumulation of cadmium at 8 and 24 h in all the cell lines. The data demonstrate that treatment of epithelial breast cancer cells with 10 μM CdCl2 for 24 h caused a greater induction of metallothionein protein and mRNA expression in p53+ and oestrogen-receptor-positive cells as compared to p53− and oestrogen-receptor-negative or weakly oestrogen-receptor-positive cells. This effect may be associated with the occurrence of apoptosis and suggests a role for p53 and oestrogen-receptor on the expression and induction of metallothionein in epithelial cells

    Overcoming ABCG2-mediated drug resistance with imidazo-[1,2-b]-pyridazine-based Pim1 kinase inhibitors

    Get PDF
    Purpose Multidrug efflux pumps such as ABCG2 confer drug resistance to a number of cancer types, leading to poor prognosis and outcome. To date, the strategy of directly inhibiting multidrug efflux pumps in order to overcome drug resistance in cancer has been unsuccessful. An alternative strategy is to target proteins involved in the regulation of multidrug efflux pump activity or expression. Pim1 kinase has been demonstrated to phosphorylate ABCG2, promote its oligomerisation and contribute to its ability to confer drug resistance. Methods In the present manuscript, imidazo-pyridazine-based inhibitors of Pim1 were examined for their ability to overcome ABCG2-mediated drug resistance. Drug efficacy was measured as a cytotoxic response or an effect on transport by ABCG2. Protein expression patterns were assessed using western immuno-blotting. Results The two Pim1 inhibitors increased the potency of flavopiridol, mitoxantrone, topotecan and doxorubicin, specifically in ABCG2-expressing cells. This effect was associated with an increase in the cellular accumulation of [3H]-mitoxantrone, suggesting direct impairment of the transporter. However, prolonged pre-incubation with the studied inhibitors greatly enhanced the effect on mitoxantrone accumulation. The inhibitors caused a significant time-dependent reduction in the expression of ABCG2 in the resistant cells, an effect that would improve drug efficacy. Conclusion Consequently, it appears that the Pim1 inhibitors display a dual-mode effect on ABCG2-expressing cancer cells. This may provide a powerful new strategy in overcoming drug resistance by targeting proteins that regulate expression of efflux pumps

    Cisplatin resistance in non-small cell lung cancer cells is associated with an abrogation of cisplatin-induced G2/M cell cycle arrest

    Get PDF
    The efficacy of cisplatin-based chemotherapy in cancer is limited by the occurrence of innate and acquired drug resistance. In order to better understand the mechanisms underlying acquired cisplatin resistance, we have compared the adenocarcinoma-derived non-small cell lung cancer (NSCLC) cell line A549 and its cisplatin-resistant sub-line A549rCDDP2000 with regard to cisplatin resistance mechanisms including cellular platinum accumulation, DNA-adduct formation, cell cycle alterations, apoptosis induction and activation of key players of DNA damage response. In A549rCDDP2000 cells, a cisplatin-induced G2/M cell cycle arrest was lacking and apoptosis was reduced compared to A549 cells, although equitoxic cisplatin concentrations resulted in comparable platinum-DNA adduct levels. These differences were accompanied by changes in the expression of proteins involved in DNA damage response. In A549 cells, cisplatin exposure led to a significantly higher expression of genes coding for proteins mediating G2/M arrest and apoptosis (mouse double minute 2 homolog (MDM2), xeroderma pigmentosum complementation group C (XPC), stress inducible protein (SIP) and p21) compared to resistant cells. This was underlined by significantly higher protein levels of phosphorylated Ataxia telangiectasia mutated (pAtm) and p53 in A549 cells compared to their respective untreated control. The results were compiled in a preliminary model of resistance-associated signaling alterations. In conclusion, these findings suggest that acquired resistance of NSCLC cells against cisplatin is the consequence of altered signaling leading to reduced G2/M cell cycle arrest and apoptosis
    corecore