231 research outputs found

    Black shale deposition and early diagenetic dolomite cementation during Oceanic Anoxic Event 1: The mid-Cretaceous Maracaibo Platform, northwestern South America

    Get PDF
    Thin laterally continuous organic-rich dolomitic marlstones were deposited in the extended Late Aptian - Early Albian epicontinental sea of northwestern South America. These intervals are the proximal equivalents of thick hemipelagic black shale-ammonitic floatstone couplets, deposited in the distally stepped, differentially subsiding part of the Maracaibo Platform. The marlstones reflect the dynamic conditions resulting from orbital forcing mechanisms and can be genetically related to (1) minor sea-level changes, (2) proximal turnovers in marine productivity, and (3) sudden climate shifts affecting mid-Cretaceous shoaling upward, shallow marine, carbonate cyclicity. Therefore, the marlstones may well be linked to the multiple environmental perturbations collectively referred to as Oceanic Anoxic Event 1. The interstitial euhedral dolomite has a medium crystallinity, and exhibits unusual textural relations with framboidal pyrite and gypsum. The authigenic mineral assemblage also includes quartz, Ca-F apatite, and barite, which together with the chemical signals of dolomite, point to an unsteady climate regime. Bulk-rock biomarker parameters, rare earth element geochemistry, and iron speciation data point to widespread photic zone anoxia and transient shallow marine euxinia by the time of deposition, with climatic instability driving the delivery of oxidized detritus from the hinterlands. These conditions led to a schizohaline redox stratified environment favorable to dolomite precipitation. In such a depositional setting, the bio-utilization of Fe, Mn, and sulfur for organic matter respiration sustained elevated pore-water alkalinity and pH, and allowed for the pre-compactional growth of interstitial dolomite

    Plankton community respiration and bacterial metabolism in a North Atlantic Shelf Sea during spring bloom development (April 2015)

    Get PDF
    Spring phytoplankton blooms are important events in Shelf Sea pelagic systems as the increase in carbon production results in increased food availability for higher trophic levels and the export of carbon to deeper waters and the sea-floor. It is usually accepted that the increase in phytoplankton abundance and production is followed by an increase in plankton respiration. However, this expectation is derived from field studies with a low temporal sampling resolution (5–15 days). In this study we have measured the time course of plankton abundance, gross primary production, plankton community respiration, respiration of the plankton size classes (> 0.8 μm and 0.2–0.8 μm) and bacterial production at ≤5 day intervals during April 2015 in order to examine the phasing of plankton autotrophic and heterotrophic processes. Euphotic depth-integrated plankton community respiration increased five-fold (from 22 ± 4 mmol O2m−2 d−1 on 4th April to 119 ± 4 mmol O2m−2 d−1 on 15th April) at the same time as gross primary production also increased five-fold, (from 114 ± 5 to 613 ± 28 mmol Cm−2 d−1). Bacterial production began to increase during the development of the bloom, but did not reach its maximum until 5 days after the peak in primary production and plankton respiration. The increase in plankton community respiration was driven by an increase in the respiration attributable to the> 0.8 μm size fraction of the plankton community (which would include phytoplankton, microzooplankton and particle attached bacteria). Euphotic depth-integrated respiration of the 0.2–0.8 μm size fraction (predominantly free living bacteria) decreased and then remained relatively constant (16 ± 3 – 11 ± 1 mmol O2m−2 d−1) between the first day of sampling (4th April) and the days following the peak in chlorophyll-a (20th and 25th April). Recent locally synthesized organic carbon was more than sufficient to fulfil the bacterial carbon requirement in the euphotic zone during this productive period. Changes in bacterial growth efficiencies (BGE, the ratio of bacterial production to bacterial carbon demand) were driven by changes in bacterial production rates increasing from<30 ± 14% on 4th April to 51 ± 11% on 25th of April. This study therefore shows a concurrent rather than a phased increase in primary production and community respiration attributable to cells>0.8 μm during the development of the spring bloom, followed 5 days later by a peak in bacterial production. In addition, the size fractionated respiration rates and high growth efficiencies suggest that free living bacteria are not the major producers of CO2 before, during and a few days after this shelf sea spring phytoplankton bloom

    Centrosome and spindle assembly checkpoint loss leads to neural apoptosis and reduced brain size

    Get PDF
    Accurate mitotic spindle assembly is critical for mitotic fidelity and organismal development. Multiple processes coordinate spindle assembly and chromosome segregation. Two key components are centrosomes and the spindle assembly checkpoint (SAC), and mutations affecting either can cause human microcephaly. In vivo studies in Drosophila melanogaster found that loss of either component alone is well tolerated in the developing brain, in contrast to epithelial tissues of the imaginal discs. In this study, we reveal that one reason for that tolerance is the compensatory relationship between centrosomes and the SAC. In the absence of both centrosomes and the SAC, brain cells, including neural stem cells, experience massive errors in mitosis, leading to increased cell death, which reduces the neural progenitor pool and severely disrupts brain development. However, our data also demonstrate that neural cells are much more tolerant of aneuploidy than epithelial cells. Our data provide novel insights into the mechanisms by which different tissues manage genome stability and parallels with human microcephaly

    Socioeconomic deprivation and mortality after emergency laparotomy: an observational epidemiological study

    Get PDF
    Background: Socioeconomic circumstances can influence access to healthcare, the standard of care provided, and a variety of outcomes. This study aimed to determine the association between crude and risk-adjusted 30-day mortality and socioeconomic group after emergency laparotomy, measure differences in meeting relevant perioperative standards of care, and investigate whether variation in hospital structure or process could explain any difference in mortality between socioeconomic groups. / Methods: This was an observational study of 58 790 patients, with data prospectively collected for the National Emergency Laparotomy Audit in 178 National Health Service hospitals in England between December 1, 2013 and November 31, 2016, linked with national administrative databases. The socioeconomic group was determined according to the Index of Multiple Deprivation quintile of each patient's usual place of residence. / Results: Overall, the crude 30-day mortality was 10.3%, with differences between the most-deprived (11.2%) and least-deprived (9.8%) quintiles (P<0.001). The more-deprived patients were more likely to have multiple comorbidities, were more acutely unwell at the time of surgery, and required a more-urgent surgery. After risk adjustment, the patients in the most-deprived quintile were at significantly higher risk of death compared with all other quintiles (adjusted odds ratio [95% confidence interval]: Q1 [most deprived]: reference; Q2: 0.83 [0.76–0.92]; Q3: 0.84 [0.76–0.92]; Q4: 0.87 [0.79–0.96]; Q5 [least deprived]: 0.77 [0.70–0.86]). We found no evidence that differences in hospital-level structure or patient-level performance in standards of care explained this association. / Conclusions: More-deprived patients have higher crude and risk-adjusted 30-day mortality after emergency laparotomy, but this is not explained by differences in the standards of care recorded within the National Emergency Laparotomy Audit

    Bioavailable iron in the Southern Ocean: the significance of the iceberg conveyor belt

    Get PDF
    Productivity in the Southern Oceans is iron-limited, and the supply of iron dissolved from aeolian dust is believed to be the main source from outside the marine reservoir. Glacial sediment sources of iron have rarely been considered, as the iron has been assumed to be inert and non-bioavailable. This study demonstrates the presence of potentially bioavailable Fe as ferrihydrite and goethite in nanoparticulate clusters, in sediments collected from icebergs in the Southern Ocean and glaciers on the Antarctic landmass. Nanoparticles in ice can be transported by icebergs away from coastal regions in the Southern Ocean, enabling melting to release bioavailable Fe to the open ocean. The abundance of nanoparticulate iron has been measured by an ascorbate extraction. This data indicates that the fluxes of bioavailable iron supplied to the Southern Ocean from aeolian dust (0.01–0.13 Tg yr-1) and icebergs (0.06–0.12 Tg yr-1) are comparable. Increases in iceberg production thus have the capacity to increase productivity and this newly identified negative feedback may help to mitigate fossil fuel emissions

    Identifying adolescents at risk for depression : a prediction score performance in cohorts based in 3 different continents

    Get PDF
    Objective: Prediction models have become frequent in the medical literature, but most published studies are conducted in a single setting. Heterogeneity between development and validation samples has been posited as a major obstacle for the generalization of models. We aimed to develop a multivariable prognostic model using sociodemographic variables easily obtainable from adolescents at age 15 to predict a depressive disorder diagnosis at age 18 and to evaluate its generalizability in 2 samples from diverse socioeconomic and cultural settings. Method: Data from the 1993 Pelotas Birth Cohort were used to develop the prediction model, and its generalizability was evaluated in 2 representative cohort studies: the Environmental Risk (E-Risk) Longitudinal Twin Study and the Dunedin Multidisciplinary Health and Development Study. Results: At age 15, 2,192 adolescents with no evidence of current or previous depression were included (44.6% male). The apparent C-statistic of the models derived in Pelotas ranged from 0.76 to 0.79, and the model obtained from a penalized logistic regression was selected for subsequent external evaluation. Major discrepancies between the samples were identified, impacting the external prognostic performance of the model (Dunedin and E-Risk C-statistics of 0.63 and 0.59, respectively). The implementation of recommended strategies to account for this heterogeneity among samples improved the model’s calibration in both samples. Conclusion: An adolescent depression risk score comprising easily obtainable predictors was developed with good prognostic performance in a Brazilian sample. Heterogeneity among settings was not trivial, but strategies to deal with sample diversity were identified as pivotal for providing better risk stratification across samples. Future efforts should focus on developing better methodological approaches for incorporating heterogeneity in prognostic research

    Prevention of Diabetes in NOD Mice by Repeated Exposures to a Contact Allergen Inducing a Sub-Clinical Dermatitis

    Get PDF
    BACKGROUND: Type 1 diabetes is an autoimmune disease, while allergic contact dermatitis although immune mediated, is considered an exposure driven disease that develops due to epicutaneous contact with reactive low-molecular chemicals. The objective of the present study was to experimentally study the effect of contact allergens on the development of diabetes in NOD mice. As the link between contact allergy and diabetes is yet unexplained we also examined the effect of provocation with allergens on Natural Killer T (NKT) cells, since involvement of NKT cells could suggest an innate connection between the two diseases. METHOD: NOD mice 4 weeks of age were exposed, on the ears, to two allergens, p-phenylenediamine and 2,4-dinitrochlorobenzene respectively, to investigate the diabetes development. The mice were followed for a maximum of 32 weeks, and they were either repeatedly exposed to the allergens or only sensitized a week after arrival. The stimulation of NKT cells by the two allergens were additionally studied in C57BL/6 mice. The mice were sensitized and two weeks later provocated with the allergens. The mice were subsequently euthanized at different time points after the provocation. RESULTS: It was found that repeated application of p-phenylenediamine reduced the incidence of diabetes compared to application with water (47% vs. 93%, P = 0.004). Moreover it was shown that in C57BL/6 mice both allergens resulted in a slight increment in the quantity of NKT cells in the liver. Application of the allergens at the same time resulted in an increased number of NKT cells in the draining auricular lymph node, and the increase appeared to be somewhat allergen specific as the accumulation was stronger for p-phenylenediamine. CONCLUSION: The study showed that repeated topical application on the ears with a contact allergen could prevent the development of diabetes in NOD mice. The contact allergens gave a non-visible, sub-clinical dermatitis on the application site. The preventive effect on diabetes may be due to stimulation of peripheral NKT cells, as shown for provocation with p-phenylenediamine in the C57BL/6 mouse. This epicutaneous procedure may lead to new strategies in prevention of type 1 diabetes in humans

    Complete Mitochondrial Genome Sequencing Reveals Novel Haplotypes in a Polynesian Population

    Get PDF
    The high risk of metabolic disease traits in Polynesians may be partly explained by elevated prevalence of genetic variants involved in energy metabolism. The genetics of Polynesian populations has been shaped by island hoping migration events which have possibly favoured thrifty genes. The aim of this study was to sequence the mitochondrial genome in a group of Maoris in an effort to characterise genome variation in this Polynesian population for use in future disease association studies. We sequenced the complete mitochondrial genomes of 20 non-admixed Maori subjects using Affymetrix technology. DNA diversity analyses showed the Maori group exhibited reduced mitochondrial genome diversity compared to other worldwide populations, which is consistent with historical bottleneck and founder effects. Global phylogenetic analysis positioned these Maori subjects specifically within mitochondrial haplogroup - B4a1a1. Interestingly, we identified several novel variants that collectively form new and unique Maori motifs – B4a1a1c, B4a1a1a3 and B4a1a1a5. Compared to ancestral populations we observed an increased frequency of non-synonymous coding variants of several mitochondrial genes in the Maori group, which may be a result of positive selection and/or genetic drift effects. In conclusion, this study reports the first complete mitochondrial genome sequence data for a Maori population. Overall, these new data reveal novel mitochondrial genome signatures in this Polynesian population and enhance the phylogenetic picture of maternal ancestry in Oceania. The increased frequency of several mitochondrial coding variants makes them good candidates for future studies aimed at assessment of metabolic disease risk in Polynesian populations

    Root-Knot Nematodes Exhibit Strain-Specific Clumping Behavior That Is Inherited as a Simple Genetic Trait

    Get PDF
    Root-knot nematodes are obligate parasites of a wide range of plant species and can feed only on the cytoplasm of living plant cells. In the absence of a suitable plant host, infective juveniles of strain VW9 of the Northern root-knot nematode, Meloidogyne hapla, when dispersed in Pluronic F-127 gel, aggregate into tight, spherical clumps containing thousands of worms. Aggregation or clumping behavior has been observed in diverse genera in the phylum Nematoda spanning free-living species such as Caenorhabditis elegans as well as both plant and animal parasites. Clumping behavior differs between strains of M. hapla and occurs with other species within this genus where strain-specific differences in clumping ability are also apparent. Exposure of M. hapla juveniles to a gradient formed using low levels of cyanide promotes formation of clumps at a preferred cyanide level. Analysis of F2 lines from a cross of M. hapla strains that differ in clump-forming behavior reveals that the behavior segregates as a single, major locus that can be positioned on the genetic map of this nematode. Clumping behavior may be a survival strategy whose importance and function depend on the niche of the nematode strain or species

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation
    • …
    corecore