266 research outputs found

    Explaining the Higgs Decays at the LHC with an Extended Electroweak Model

    Get PDF
    We show that the recent discovery of a new boson at the LHC, which we assume to be a Higgs boson, and the observed enhancement in its diphoton decays compared to the SM prediction, can be explained by a new doublet of charged vector bosons from an extended electroweak gauge sector model with SU(3)_C\otimesSU(3)_L\otimesU(1)_X symmetry. Our results show a good agreement between our theoretical expected sensitivity to a 126--125 GeV Higgs boson and the experimental significance observed in the diphoton channel at the 8 TeV LHC. Effects of an invisible decay channel for the Higgs boson are also taken into account, in order to anticipate a possible confirmation of deficits in the branching ratios into ZZZZ^*, WWWW^*, bottom quarks, and tau leptons.Comment: 16 pages, 5 figure

    Deep brain stimulation for obsessive-compulsive disorder and treatment-resistant depression: systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In spite of advances in psychotherapy and pharmacotherapy, there are still a significant number of patients with depression and obsessive-compulsive disorder that are not aided by either intervention. Although still in the experimental stage, deep brain stimulation (DBS) offers many advantages over other physically-invasive procedures as a treatment for these psychiatric disorders. The purpose of this study is to systematically review reports on clinical trials of DBS for obsessive-compulsive disorder (OCD) and treatment-resistant depression (TRD). Locations for stimulation, success rates and effects of the stimulation on brain metabolism are noted when available. The first observation of the effects of DBS on OCD and TRD came in the course of using DBS to treat movement disorders. Reports of changes in OCD and depression during such studies are reviewed with particular attention to electrode locations and associated adverse events; although these reports were adventitious observations rather than planned. Subsequent studies have been guided by more precise theories of structures involved in DBS and OICD. This study suggests stimulation sites and prognostic indicators for DBS. We also briefly review tractography, a relatively new procedure that holds great promise for the further development of DBS.</p> <p>Methods</p> <p>Articles were retrieved from MEDLINE via PubMed. Relevant references in retrieved articles were followed up. We included all articles reporting on studies of patients selected for having OCD or TRD. Adequacy of the selected studies was evaluated by the Jadad scale. Evaluation criteria included: number of patients, use of recognized psychiatric rating scales, and use of brain blood flow measurements. Success rates classified as "improved" or "recovered" were recorded. Studies of DBS for movement disorders were included if they reported coincidental relief of depression or reduction in OCD. Most of the studies involved small numbers of subjects so individual studies were reviewed.</p> <p>Results</p> <p>While the number of cases was small, these were extremely treatment-resistant patients. While not everyone responded, about half the patients did show dramatic improvement. Associated adverse events were generally trivial in younger psychiatric patients but often severe in older movement disorder patients. The procedures differed from study to study, and the numbers of patients was usually too small to do meaningful statistics or make valid inferences as to who will respond to treatment.</p> <p>Conclusions</p> <p>DBS is considered a promising technique for OCD and TRD. Outstanding questions about patient selection and electrode placement can probably be resolved by (a) larger studies, (b) genetic studies and (c) imaging studies (MRI, fMRI, PET, and tractography).</p

    Coupled variability in primary sensory areas and the hippocampus during spontaneous activity

    Get PDF
    The cerebral cortex is an anatomically divided and functionally specialized structure. It includes distinct areas, which work on different states over time. The structural features of spiking activity in sensory cortices have been characterized during spontaneous and evoked activity. However, the coordination among cortical and sub-cortical neurons during spontaneous activity across different states remains poorly characterized. We addressed this issue by studying the temporal coupling of spiking variability recorded from primary sensory cortices and hippocampus of anesthetized or freely behaving rats. During spontaneous activity, spiking variability was highly correlated across primary cortical sensory areas at both small and large spatial scales, whereas the cortico-hippocampal correlation was modest. This general pattern of spiking variability was observed under urethane anesthesia, as well as during waking, slow-wave sleep and rapid-eye-movement sleep, and was unchanged by novel stimulation. These results support the notion that primary sensory areas are strongly coupled during spontaneous activity.project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (FEDER). NAPV was supported by Centro Universitario do Rio Grande do Norte, Champalimaud Foundation, and Brazilian National Council for Scientific and Technological Development (CNPq, Grant 249991/2013-6), CC-S (SFRH/BD/51992/2012). AJR (IF/00883/2013). SR by UFRN, CNPq (Research Productivity Grant 308775/2015-5), and S. Paulo Research Foundation FAPESP - Center for Neuromathematics (Grant 2013/07699-0)info:eu-repo/semantics/publishedVersio

    Hemokinin-1 Gene Expression Is Upregulated in Microglia Activated by Lipopolysaccharide through NF-κB and p38 MAPK Signaling Pathways

    Get PDF
    The mammalian tachykinins, substance P (SP) and hemokinin-1 (HK-1), are widely distributed throughout the nervous system and/or peripheral organs, and function as neurotransmitters or chemical modulators by activating their cognate receptor NK1. The TAC1 gene encoding SP is highly expressed in the nervous system, while the TAC4 gene encoding HK-1 is uniformly expressed throughout the body, including a variety of peripheral immune cells. Since TAC4 mRNA is also expressed in microglia, the resident immune cells in the central nervous system, HK-1 may be involved in the inflammatory processes mediated by these cells. In the present study, we found that TAC4, rather than TAC1, was the predominant tachykinin gene expressed in primary cultured microglia. TAC4 mRNA expression was upregulated in the microglia upon their activation by lipopolysaccharide, a well-characterized Toll-like receptor 4 agonist, while TAC1 mRNA expression was downregulated. Furthermore, both nuclear factor-κB and p38 mitogen-activated protein kinase intracellular signaling pathways were required for the upregulation of TAC4 mRNA expression, but not for the downregulation of TAC1 mRNA expression. These findings suggest that HK-1, rather than SP, plays dominant roles in the pathological conditions associated with microglial activation, such as neurodegenerative and neuroinflammatory disorders

    A cortical motor nucleus drives the basal ganglia-recipient thalamus in singing birds

    Get PDF
    The pallido-recipient thalamus transmits information from the basal ganglia to the cortex and is critical for motor initiation and learning. Thalamic activity is strongly inhibited by pallidal inputs from the basal ganglia, but the role of nonpallidal inputs, such as excitatory inputs from cortex, remains unclear. We simultaneously recorded from presynaptic pallidal axon terminals and postsynaptic thalamocortical neurons in a basal ganglia–recipient thalamic nucleus that is necessary for vocal variability and learning in zebra finches. We found that song-locked rate modulations in the thalamus could not be explained by pallidal inputs alone and persisted following pallidal lesion. Instead, thalamic activity was likely driven by inputs from a motor cortical nucleus that is also necessary for singing. These findings suggest a role for cortical inputs to the pallido-recipient thalamus in driving premotor signals that are important for exploratory behavior and learning.National Institutes of Health (U.S.) (Grant R01DC009183)National Institutes of Health (U.S.) (Grant K99NS067062)Damon Runyon Cancer Research Foundation (Postdoctoral Fellowship)Charles A. King Trust (Postdoctoral Fellowship

    Growth Rules for the Repair of Asynchronous Irregular Neuronal Networks after Peripheral Lesions

    Get PDF
    © 2021 Sinha et al. This is an open access article distributed under the terms of the Creative Commons Attribution License. https://creativecommons.org/licenses/by/4.0/Several homeostatic mechanisms enable the brain to maintain desired levels of neuronal activity. One of these, homeostatic structural plasticity, has been reported to restore activity in networks disrupted by peripheral lesions by altering their neuronal connectivity. While multiple lesion experiments have studied the changes in neurite morphology that underlie modifications of synapses in these networks, the underlying mechanisms that drive these changes are yet to be explained. Evidence suggests that neuronal activity modulates neurite morphology and may stimulate neurites to selective sprout or retract to restore network activity levels. We developed a new spiking network model of peripheral lesioning and accurately reproduced the characteristics of network repair after deafferentation that are reported in experiments to study the activity dependent growth regimes of neurites. To ensure that our simulations closely resemble the behaviour of networks in the brain, we model deafferentation in a biologically realistic balanced network model that exhibits low frequency Asynchronous Irregular (AI) activity as observed in cerebral cortex. Our simulation results indicate that the re-establishment of activity in neurons both within and outside the deprived region, the Lesion Projection Zone (LPZ), requires opposite activity dependent growth rules for excitatory and inhibitory post-synaptic elements. Analysis of these growth regimes indicates that they also contribute to the maintenance of activity levels in individual neurons. Furthermore, in our model, the directional formation of synapses that is observed in experiments requires that pre-synaptic excitatory and inhibitory elements also follow opposite growth rules. Lastly, we observe that our proposed structural plasticity growth rules and the inhibitory synaptic plasticity mechanism that also balances our AI network both contribute to the restoration of the network to pre-deafferentation stable activity levels.Peer reviewe

    What causes hidradenitis suppurativa? - 15 years after

    Get PDF
    The 14 authors of the first review article on hidradenitis suppurativa (HS) pathogenesis published 2008 in EXPERIMENTAL DERMATOLOGY cumulating from the 1st International Hidradenitis Suppurativa Research Symposium held March 30?April 2, 2006 in Dessau, Germany with 33 participants were prophetic when they wrote "Hopefully, this heralds a welcome new tradition: to get to the molecular heart of HS pathogenesis, which can only be achieved by a renaissance of solid basic HS research, as the key to developing more effective HS therapy." (Kurzen et al. What causes hidradenitis suppurativa? Exp Dermatol 2008;17:455). Fifteen years later, there is no doubt that the desired renaissance of solid basic HS research is progressing with rapid steps and that HS has developed deep roots among inflammatory diseases in Dermatology and beyond, recognized as ?the only inflammatory skin disease than can be healed?. This anniversary article of 43 research-performing authors from all around the globe in the official journal of the European Hidradenitis Suppurativa Foundation e.V. (EHSF e.V.) and the Hidradenitis Suppurativa Foundation, Inc (HSF USA) summarizes the evidence of the intense HS clinical and experimental research during the last 15 years in all aspects of the disease and provides information of the developments to come in the near future

    Estimating the burden of disease attributable to four selected environmental risk factors in South Africa

    Get PDF
    The first South African National Burden of Disease study quantified the underlying causes of premature mortality and morbidity experienced in South Africa in the year 2000. This was followed by a Comparative Risk Assessment to estimate the contributions of 17 selected risk factors to burden of disease in South Africa. This paper describes the health impact of exposure to four selected environmental risk factors: unsafe water, sanitation and hygiene; indoor air pollution from household use of solid fuels; urban outdoor air pollution and lead exposure.The study followed World Health Organization comparative risk assessment methodology. Population-attributable fractions were calculated and applied to revised burden of disease estimates (deaths and disability adjusted life years, [DALYs]) from the South African Burden of Disease study to obtain the attributable burden for each selected risk factor. The burden attributable to the joint effect of the four environmental risk factors was also estimated taking into account competing risks and common pathways. Monte Carlo simulation-modeling techniques were used to quantify sampling, uncertainty.Almost 24 000 deaths were attributable to the joint effect of these four environmental risk factors, accounting for 4.6% (95% uncertainty interval 3.8-5.3%) of all deaths in South Africa in 2000. Overall the burden due to these environmental risks was equivalent to 3.7% (95% uncertainty interval 3.4-4.0%) of the total disease burden for South Africa, with unsafe water sanitation and hygiene the main contributor to joint burden. The joint attributable burden was especially high in children under 5 years of age, accounting for 10.8% of total deaths in this age group and 9.7% of burden of disease.This study highlights the public health impact of exposure to environmental risks and the significant burden of preventable disease attributable to exposure to these four major environmental risk factors in South Africa. Evidence-based policies and programs must be developed and implemented to address these risk factors at individual, household, and community levels
    corecore