114 research outputs found

    Assembling pieces of the centromere epigenetics puzzle

    Get PDF
    The centromere is a key region for cell division where the kinetochore assembles, recognizes and attaches to microtubules so that each sister chromatid can segregate to each daughter cell. The centromeric chromatin is a unique rigid chromatin state promoted by the presence of the histone H3 variant CENP-A, in which epigenetic histone modifications of both heterochromatin or euchromatin states and associated protein elements are present. Although DNA sequence is not regarded as important for the establishment of centromere chromatin, it has become clear that this structure is formed as a result of a highly regulated epigenetic event that leads to the recruitment and stability of kinetochore proteins. We describe an integrative model for epigenetic processes that conform regional chromatin interactions indispensable for the recruitment and stability of kinetochore proteins. If alterations of these chromatin regions occur, chromosomal instability is promoted, although segregation may still take place

    Lysyl oxidase-like 2 (LOXL2), a new regulator of cell polarity required for metastatic dissemination of basal-like breast carcinomas

    Get PDF
    Basal-like breast carcinoma is characterized by the expression of basal/ myoepithelial markers, undifferentiated phenotype, highly aggressive behaviour and frequent triple negative status (ESR , PR , Her2neu ). We have previously shown that epithelial–mesenchymal transition (EMT) occurs in basal-like breast tumours and identified Lysyl-oxidase-like 2 (LOXL2) as an EMT player and poor prognosis marker in squamous cell carcinomas. We now show that LOXL2 mRNA is overexpressed in basal-like human breast carcinomas. Breast carcinoma cell lines with basal-like phenotype show a specific cytoplasmic/perinuclear LOXL2 expression, and this subcellular distribution is significantly associated with distant metastatic incidence in basal-like breast carcinomas. LOXL2 silencing in basal-like carcinoma cells induces a mesenchymal-epithelial transition (MET) associated with a decrease of tumourigenicity and suppression of metastatic potential. Mechanistic studies indicate that LOXL2 maintains the mesenchymal phenotype of basal-like carcinoma cells by a novel mechanism involving transcriptional downregulation of Lgl2 and claudin1 and disorganization of cell polarity and tight junction complexes. Therefore, intracellular LOXL2 is a new candidate marker of basal-like carcinomas and a target to block metastatic dissemination of this aggressive breast tumour subtypeThis work was supported by grants from the Spanish Ministry of Science and Innovation, MICINN, (SAF2007-53061; SAF2010-21143; Consolider Ingenio CSD2007/00017, to AC; SAF2007-63075; SAF2010-20175 to GM-B); Fundacion Mutua Madrileña (2007, 2009 to AC and GM-B); Instituto de Salud Carlos III (ISCIII) (PI 080971 to JP), and Junta de Andalucıa (PI-0384/2007; PI 080971, P07-CVI- 03100 to JP). FS and A Martı´n are recipients of JAE-pre and JAE-postdoc contracts from the Spanish Research Council (CSIC), respectively; MAC is founded by the RETICS (ISCIII)

    Fibroblasts—a key host cell type in tumor initiation, progression, and metastasis

    Get PDF
    Tumor initiation, growth, invasion, and metastasis occur as a consequence of a complex interplay between the host environment and cancer cells. Fibroblasts are now recognized as a key host cell type involved in host–cancer signaling. This review discusses some recent studies that highlight the roles of fibroblasts in tumor initiation, early progression, invasion, and metastasis. Some clinical studies describing the prognostic significance of fibroblast-derived markers and signatures are also discussed

    Molecular biology of breast cancer metastasis Molecular expression of vascular markers by aggressive breast cancer cells

    Get PDF
    During embryogenesis, the formation of primary vascular networks occurs via the processes of vasculogenesis and angiogenesis. In uveal melanoma, vasculogenic mimicry describes the 'embryonic-like' ability of aggressive, but not nonaggressive, tumor cells to form networks surrounding spheroids of tumor cells in three-dimensional culture; these recapitulate the patterned networks seen in patients' aggressive tumors and correlates with poor prognosis. The molecular profile of these aggressive tumor cells suggests that they have a deregulated genotype, capable of expressing vascular phenotypes. Similarly, the embryonic-like phenotype expressed by the aggressive human breast cancer cells is associated with their ability to express a variety of vascular markers. These studies may offer new insights for consideration in breast cancer diagnosis and therapeutic intervention strategies

    Identification of ChIP-seq mapped targets of HP1β due to bombesin/GRP receptor activation

    Get PDF
    Epithelial cells lining the adult colon do not normally express gastrin-releasing peptide (GRP) or its receptor (GRPR). In contrast, GRP/GRPR can be aberrantly expressed in human colorectal cancer (CRC) including Caco-2 cells. We have previously shown that GRPR activation results in the up-regulation of HP1β, an epigenetic modifier of gene transcription. The aim of this study was to identify the genes whose expression is altered by HP1β subsequent to GRPR activation. We determined HP1β binding positions throughout the genome using chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq). After exposure to GRP, we identified 9,625 genomic positions occupied by HP1β. We performed gene microarray analysis on Caco-2 cells in the absence and presence of a GRPR specific antagonist as well as siRNA to HP1β. The expression of 97 genes was altered subsequent to GRPR antagonism, while the expression of 473 genes was altered by HP1β siRNA exposure. When these data were evaluated in concert with our ChIP-seq findings, 9 genes showed evidence of possible altered expression as a function of GRPR signaling via HP1β. Of these, genomic PCR of immunoprecipitated chromatin demonstrated that GRPR signaling affected the expression of IL1RAPL2, FAM13A, GBE1, PLK3, and SLCO1B3. These findings provide the first evidence by which GRPR aberrantly expressed in CRC might affect tumor progression

    Differential Matrix Rigidity Response in Breast Cancer Cell Lines Correlates with the Tissue Tropism

    Get PDF
    Metastasis to a variety of distant organs, such as lung, brain, bone, and liver, is a leading cause of mortality in the breast cancer patients. The tissue tropism of breast cancer metastasis has been recognized and studied extensively, but the cellular processes underlying this phenomenon, remain elusive. Modern technologies have enabled the discovery of a number of the genetic factors determining tissue tropism of malignant cells. However, the effect of these genetic differences on the cell motility and invasiveness is poorly understood. Here, we report that cellular responses to the mechanical rigidity of the extracellular matrix correlate with the rigidity of the target tissue. We tested a series of single cell populations isolated from MDA-MB-231 breast cancer cell line in a variety of assays where the extracellular matrix rigidity was varied to mimic the environment that these cells might encounter in vivo. There was increased proliferation and migration through the matrices of rigidities corresponding to the native rigidities of the organs where metastasis was observed. We were able to abolish the differential matrix rigidity response by knocking down Fyn kinase, which was previously identified as a critical component of the FN rigidity response pathway in healthy cells. This result suggests possible molecular mechanisms of the rigidity response in the malignant cells, indicating potential candidates for therapeutic interventions

    Class II MHC Self-Antigen Presentation in Human B and T Lymphocytes

    Get PDF
    Human CD4[superscript +] T cells process and present functional class II MHC-peptide complexes, but the endogenous peptide repertoire of these non-classical antigen presenting cells remains unknown. We eluted and sequenced HLA-DR-bound self-peptides presented by CD4[superscript +] T cells in order to compare the T cell-derived peptide repertoire to sequences derived from genetically identical B cells. We identified several novel epitopes derived from the T cell-specific proteome, including fragments of CD4 and IL-2. While these data confirm that T cells can present peptides derived from the T-cell specific proteome, the vast majority of peptides sequenced after elution from MHC were derived from the common proteome. From this pool, we identified several identical peptide epitopes in the T and B cell repertoire derived from common endogenous proteins as well as novel endogenous epitopes with promiscuous binding. These findings indicate that the endogenous HLA-DR-bound peptide repertoire, regardless of APC type and across MHC isotype, is largely derived from the same pool of self-protein.National Institutes of Health (U.S.) (grant P01AI039671)National Institutes of Health (U.S.) (P01AI045757

    Neuropathic Pain Phenotype Does Not Involve the NLRP3 Inflammasome and Its End Product Interleukin-1β in the Mice Spared Nerve Injury Model.

    Get PDF
    The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is one of the main sources of interleukin-1β (IL-1β) and is involved in several inflammatory-related pathologies. To date, its relationship with pain has not been studied in depth. The aim of our study was to elucidate the role of NLRP3 inflammasome and IL-1β production on neuropathic pain. Results showed that basal pain sensitivity is unaltered in NLRP3-/- mice as well as responses to formalin test. Spared nerve injury (SNI) surgery induced the development of mechanical allodynia and thermal hyperalgesia in a similar way in both genotypes and did not modify mRNA levels of the NLRP3 inflammasome components in the spinal cord. Intrathecal lipopolysaccharide (LPS) injection increases apoptosis-associated speck like protein (ASC), caspase-1 and IL-1β expression in both wildtype and NLRP3-/- mice. Those data suggest that NLRP3 is not involved in neuropathic pain and also that other sources of IL-1β are implicated in neuroinflammatory responses induced by LPS
    corecore