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Abstract
The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is one of

the main sources of interleukin-1β (IL-1β) and is involved in several inflammatory-related

pathologies. To date, its relationship with pain has not been studied in depth. The aim of our

study was to elucidate the role of NLRP3 inflammasome and IL-1β production on neuro-

pathic pain. Results showed that basal pain sensitivity is unaltered in NLRP3-/- mice as well

as responses to formalin test. Spared nerve injury (SNI) surgery induced the development

of mechanical allodynia and thermal hyperalgesia in a similar way in both genotypes and

did not modify mRNA levels of the NLRP3 inflammasome components in the spinal cord.

Intrathecal lipopolysaccharide (LPS) injection increases apoptosis-associated speck like

protein (ASC), caspase-1 and IL-1β expression in both wildtype and NLRP3-/- mice. Those

data suggest that NLRP3 is not involved in neuropathic pain and also that other sources of

IL-1β are implicated in neuroinflammatory responses induced by LPS.

Introduction
The inflammasomes are cytosolic protein complexes which act as intracellular sensors of disrup-
tion of homeostasis. Their stimulation leads to the proteolytic cleavage of the proinflammatory
cytokines pro-IL-1β (interleukin-1 beta) and pro-IL-18 (interleukin-18) through the activation
of caspase-1. The active complex consists of a central scaffold protein for which it is named (e.g.
NLRP1, NLRP3, NLRP6, NLRC4, AIM2), an adaptor apoptosis-associated speck-like protein
(ASC) containing a caspase activation and recruitment domain (CARD), which is mandatory
for most inflammasomes, and the precursor form of caspase-1 enzyme, pro-caspase-1. How the
inflammasomes are activated is still debated, but in the case of NLRP3 (NACHT, LRR and PYD
domains-containing protein 3), one of the most studied caspase-1 activators, several signals
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related to cell damage and stress (generation of extracellular ATP, production of reactive oxygen
species (ROS), activators that form crystalline/particulate ligands) are likely involved [1]. When
the inflammasome is activated, pro-caspase-1 undergoes an autolysis leading to the formation
of caspase-1, which in turn cleaves pro-IL-1β, generating the mature cytokine, which is subse-
quently released along with caspase-1 [2], via non-classical secretory pathways [3, 4]. The
NLRP3 inflammasome is the most studied inflammasome in the central nervous system [5]. It
has been linked to acute disorders (from infections [6] to acute brain injury [7]) and chronic dis-
eases exhibiting an inflammatory component (experimental autoimmune encephalitis [8], Par-
kinson’s disease [9], Alzheimer’s disease [10], prion disease [11], etc.). NLRP3 was recently also
implicated in fibromyalgia [12]. NLRP3 inflammasome has been studied in microglia and mac-
rophages but has also been suggested to have functions in neurons [6, 13]. In the spinal cord,
the expression of NLRP3 is increased in an experimental autoimmune encephalitis model and
NLRP3 knockout mice show a delayed course of a less severe disease [14].

Following peripheral nerve injury, extensive inflammatory changes have been described in
the central nervous system, which participate in the painful behaviour [15, 16]; this encom-
passes microglial and astrocytic reactivity and the involvement of multiple cytokines. Proto-
typic pro-inflammatory cytokines such as IL-1β, interleukin-6 or tumour necrosis factor-α are
often cited as major contributors in the neuro-glial crosstalk during inflammatory reactions of
the central nervous system [16].

A major behavioural consequence of peripheral nerve injury is pain. Pain relationship with
IL-1β has been studied for a long time. IL-1β causes mechanical and thermal hyperalgesia
when injected into peripheral and central tissues [17–22], and increased IL-1β expression in
the spinal cord, DRG, and injured nerve in some animal models of neuropathic pain has been
described [23–28].

Here we hypothesize NLRP3 inflammasome has a role in acute and chronic pain following
peripheral nerve injury, as well as a role in IL-1β expression. The behavioural response and
expression of the NLRP3 complex components were assessed after a nerve injury or after intra-
thecal injection of lipopolysaccharide (LPS). We demonstrate that pain-related behaviour in
naive and neuropathic animals is unchanged in NLRP3 deficient mice and that IL-1β does not
play a major role in the spinal cord in the spared nerve injury model in mice. Moreover, IL-1β
expression following intrathecal LPS is independent of NLRP3.

Methods

Animals and surgery
All experiments were approved by the Committee on Animal Experimentation of the Canton
de Vaud, Lausanne, Switzerland, in accordance with Swiss Federal law on animal care, the
guidelines of the International Association for the Study of Pain (IASP) and the ARRIVE
guideline (S1 Text) [29]. Mice were housed 5/cage at constant temperature (21 ± 2°C) and a
12/12 dark/light cycle. Animals had ad libitum access to water and food.

NLRP3-/-mice. C57Bl/6-TgH(NLRP3)12Siec mice were kindly provided by the laboratory
of late J Tschopp (Biochemistry Institute, University of Lausanne, Switzerland) [30, 31]. Adult
male and female knockout mice or their wildtype littermates were used. Mutant and wildtype
genotypes were confirmed using PCR and standard agarose gel electrophoresis.

Spared Nerve Injury (SNI). Mice were randomly separated in two groups to undergo SNI
or sham procedure. Animals were anaesthetised using isoflurane 1.5–2.5% (Abott AG, Baar,
ZG, Switzerland). Incision was made at mid-thigh level using the femur as a landmark and a
section was made through the biceps femoris. The three peripheral branches (sural, common
peroneal and tibial nerves) of the sciatic nerve were exposed. Both tibial and common peroneal
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nerves were ligated using a 6.0 silk suture and transected. The sural nerve was carefully pre-
served by avoiding any nerve stretch or nerve contact [32, 33]. For animals undergoing sham
surgery, same procedure was performed but the nerves remained untouched. Animals were
routinely observed daily for 3 days after surgery and then once a week by the experimenter.
Besides observing weight, social and individual behaviour, the operated hindpaw was examined
for signs of injury or autotomy. No analgesia is provided after the surgery in order to avoid
interference with chronic pain mechanisms and this is in accordance with our veterinary
authorization. Suffering is minimized by careful handling and increased bedding.

Drugs and delivery
Mice were lightly restrained and were intrathecally injected into the lumbar region, between
the L5 and L6 vertebrae, using a 29G 13mm needle, with LPS (2 μg dissolved in 10 μl of 0.9%
NaCl, Sigma Aldrich, L-6529) or vehicle (10 μl of 0.9% NaCl). A first injection is intended to
prime the immune system; a second is administered 24 hours later.

Quantitative PCR
Animals were sacrificed by terminal anesthesia with pentobarbital. L4 and L5 spinal cords were
rapidly dissected and collected in RNA-later solution (Qiagen, Basel, Switzerland). mRNA was
extracted and purified with RNeasy Plus Mini kit (Qiagen) and quantified using RNA 6000
Nano Assay (Agilent Technologies AG, Basel, Switzerland). A total of 1 μg of RNA was reverse
transcribed for each sample using Omniscript reverse transcriptase (Qiagen). Gene-specific
mRNA analyses were performed using the iQ SYBR-green Supermix (BioRad, Reinach, Swit-
zerland) and the iQ5 real-time PCR detection system (BioRad) with the following conditions: 3
min at 95°C and 45 cycles of 10s at 95°C and 45s at 60°C. Primer sequences are shown in
Table 1. To confirm the specificity of amplification, each qPCR product was sequenced. Briefly,
qPCR products were loaded on a low melt agarose gel to first confirm the size of the amplicon.
Amplicons were then subcloned in pGEM-T Vector System (Promega, Madison, WI, USA),
and sent for sequencing using T7 promoter (Fasteris, Geneva, Switzerland). Only reactions
with the appropriate melting curves and correct size on gel migration after amplification were
analyzed. All samples were run in triplicate. GAPDH and HPRT were first validated as refer-
ence gene after SNI in mice using a similar method to our previous validation in rat [34]. Rela-
tive Quantification to reference genes was performed using the delta-delta Ct method.

Table 1. List of primers used on qPCR experiments.

Gene Accession number Amplicon length Concentration used Sequence (5’ > 3’), Fwd and Rev Efficiency

Caspase-1 NM_009807.2 63 200nM CCCAAGCTTGAAAGACAAGCC 0.92

CCTTGTTTCTCTCCACGGCAT

IL-1β NM_008361 119 200nM GAAGTTGACGGACCCCAAAA 0.85

GCCTGCCTGAAGCTCTTGTT

GAPDH NM_008084.2 70 200nM TCCATGACAACTTTGGCATTG 0.85

CAGTCTTCTGGGTGGCAGTGA

HPRT NM_013556.2 96 200nM ACTGGAAAGAATGTCTTGATTGTTG 1

CATTTTGGGGCTGTACTGCTT

ASC NM_023258.4 149 200nM CTGCAGATGGACGCCATAGAT 1.02

GCTCCAGACTCTTCTTTAGTCGT

GCTCCAGACTCTTCTTTAGTCGT

doi:10.1371/journal.pone.0133707.t001
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IL-1β ELISA
Protein concentration of all samples was determined using Bradford method (Biorad). Forty to
60 μg of protein were used for ELISA analysis using the Mouse IL-1β ELISA Ready-SET-Go!
eBioscience kit. Kit-supplied standards and test samples were run in duplicate following the
manufacturer instructions. Samples were read at 450nm with wavelength correction at 540nm.

Behavioural testing
Animals were tested in a temperature stable room during the light period of their day/night
cycle (7h00-19h00), at the same time every day after a period of habituation to the experimen-
tal handling. They were allowed to accustom for a period of 15–30 minutes before each testing.
All behavioural testing was carried out blind to treatment, and genotype.

Von Frey test. Animals were placed in a polymethyl methacrylate box with a wire grid
floor. Withdrawal thresholds were assessed using calibrated von Frey hairs (Ugo Basile)
according to the “up-down”method [35]. The 50% withdrawal threshold (in grams) was calcu-
lated using the method described by Dixon [36].

Hargreaves test. The noxious heat threshold of the hind paw was determined using Har-
greaves plantar test [37]. Animals were placed in acrylic cubicles (8 x 5 x 10 cm) atop a uniform
glass surface, and allowed to habituate before testing. An infrared light source was directed to
the plantar surface of the hind paw, and the latency of withdrawal was recorded. To prevent tis-
sue injury, the maximum stimulus duration was 20 seconds. Three responses were recorded for
each hind paw, and an average response for each was taken.

Hot-plate test. The hot-plate assay was conducted by placing the animals on the hot-plate
surface set at defined temperatures (49°C, 52°C, and 55°C). The latency of response (in sec-
onds) until a hind paw lick or jump was determined. The cutoff was adjusted for each tempera-
ture to avoid tissue damage (60 seconds for 49°C, 30 seconds for 52°C, and 20 seconds for
55°C).

Acetone test. Response to cold stimulus was evaluated by applying an acetone drop
formed with a syringe connected to a thin polyethylene tube to the plantar skin of animal’s
hindpaw. The acetone drop was applied twice with an interval of at least one minute to each
animal hindpaw and the duration of the response (licking, biting, shacking) during one minute
was recorded.

Tail-flick assay. The tail-flick assay was conducted using a tail-flick analgesia meter
(Columbus Instruments), and the mice were gently restrained in a conical plastic cloth. The
latency of response (in seconds) was recorded at 2 different light beam intensities 4 and 7
(AU).

Pincher test. The pincher test consists of a pair of large blunt forceps (15 cm long; flat con-
tact area: 7 mm × 1.5 mm with smooth edges) equipped with 2 strain gauges connected to a
modified electronic dynamometer (Bioseb). The tips of the forceps were placed around the tail
or the paw of the tested mouse, and the force applied was incremented by hand until a with-
drawal response occurred. The measurement was repeated 3 times, and the mean force (in
grams) that induced withdrawal was calculated.

Formalin test. The formalin test was conducted by injecting 10 μl of 5% formalin subcuta-
neously into the left hindpaw. The time (in seconds) the animal spent lifting, flinching and lick-
ing its paw was recorded at 5-minute intervals for 60 minutes.

Statistical analysis
All data are represented as mean ± SD. ELISA, qPCR data were analysed using one-way
ANOVA followed by Dunnett's post-test. Behavioural data were analysed using two-way
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repeated measures ANOVA followed by Bonferroni post-test where appropriate. A P value less
than 0.05 was considered significant. All analyses were carried out using the statistical package
SigmaPlot for Windows, version 12 or GraphPad Prism, version 5.03. For the IL-1 β ELISA
experiment, a power study was performed from the time course data to compare sham vs SNI-
1 week animals (alpha error of 0.05, power of 0.8) which yielded to n = 17 animals per group.
Sample size calculation was done with GPower software [38].

Results

NLRP3-/- mice show no modification in pain behaviour
We first determined if the lack of NLRP3 component of the inflammasome plays any role on
basal sensitivity. The lack of expression of NLRP3 gene does not modify responses to sensory
stimuli in behavioural tests (see Table 2 and S1 Fig). These results show that NLRP3 does not
play any role in the perception of painful stimuli in naive animals. In the absence of stimuli,
inflammasome is not activated and its components are not oligomerized, which can explain
the lack of changes in basal conditions of animals lacking NLRP3 expression. The absence of
phenotype before challenging the system has been previously demonstrated in a different para-
digm [39].

SNI and formalin-elicited pain responses do not require NLRP3
expression
We then tested how the animals’ sensitivity is altered when challenged by a neuropathic or an
inflammatory injury. NLRP3-deficient and wildtype mice underwent SNI and behavioural
tests were performed to assess the expected development of mechanical allodynia and thermal
hyperalgesia in the injured limb [32]. Results of a light mechanical stimulus (von Frey test)
show that both wildtype and knockout animals develop allodynia 7 days after SNI surgery, evi-
denced by a lowering of the response threshold. This symptom remains constant in both geno-
types until 28 days after SNI (Fig 1A). The application of radiant heat on the plantar surface of
the affected limb showed thermal hyperalgesia, evidenced by a shortening of withdrawal
latency, without difference between genotypes (Fig 1B).

Table 2. Basal sensitivity of NLRP3-deficient mice.

Mechanical sensitivity

Withdrawal threshold (g) Wt NLRP3-/- p-value

von Frey 1.77 ± 0.74 1.26 ± 0.58 0.080

Pincher Tail 334.5 ± 93.0 342.2 ± 57.2 0.826

Thermal sensitivity- Heat

Withdrawal latency (s) Wt NLRP3-/- p-value

Radiant heat 7.85 ± 2.85 8.08 ± 3.33 0.872

Hot-plate– 55°C 6.36 ± 1.93 5.78 ± 1.21 0.425

Hot-plate– 52°C 11.94 ± 2.54 10.26 ± 1.63 0.095

Hot-plate– 49°C 19.03 ± 4.66 15.44 ± 3.14 0.058

Tail-flick—Intensity 4 44.48 ± 13.07 34.25 ± 19.06 0.178

Tail-flick—Intensity 7 14.96 ± 2.90 13.63 ± 4.09 0.412

Thermal sensitivity- Cold

Withdrawal duration (s) Wt NLRP3-/- p-value

Acetone test 2.3 ± 3.95 1.52 ± 0.56 0.567

doi:10.1371/journal.pone.0133707.t002

No NLRP3 Inflammasome Involvment in a Mice Neuropathic Pain Model

PLOS ONE | DOI:10.1371/journal.pone.0133707 July 28, 2015 5 / 13



Mechanical allodynia and thermal hyperalgesia are not affected by NLRP3 deletion, which
suggest that this inflammasome is not necessary for the development of neuropathic pain
related to peripheral nerve injury.

We then tested the possible involvement of NLRP3 inflammasome in the responses follow-
ing intraplantar formalin injection leading to acute inflammatory pain behaviour. The admin-
istration of 10 μl of 5% formalin elicited the classical biphasic response with a first phase,
corresponding to the direct stimulation of nociceptors, and a second phase, in which inflam-
matory and central sensitization mechanisms are involved. Both phases were similar in
NLRP3-/- mice and wildtype controls (Fig 1C and 1D).

Fig 1. Pain development in wildtype and NLRP3-/- mice after SNI. Timecourse of the development of mechanical allodynia, measured by von Frey test (A)
and thermal hyperalgesia measured by Hargreaves test (B) after SNI surgery in NLRP3-deficient animals and their littermate controls. Both genotypes
develop painful behaviour. No difference was observed between genotypes. Acute response to formalin injection in the hindpaw of NLRP3-deficient mice or
littermate controls (C, D). Timecourse of the nocifensive response did not reveal difference between genotypes during the first or second phase of the test.
P� 0.05, ANOVA two-way with Bonferroni correction. Data are expressed as mean ± SD, n = 10 animals per group for all panels.

doi:10.1371/journal.pone.0133707.g001
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Inflammasome complex do not change after SNI surgery
In the absence of behavioural phenotype in naive animals but also in neuropathic and inflam-
matory pain models, we investigated the reactivity of inflammasome components and IL-1β.
Expression of inflammasome components in the spinal cord one and two weeks after SNI
revealed that mRNA levels of ASC, caspase-1 and IL-1β assessed by qPCR remained unaltered
(Fig 2A–2C). There is no regulation at the protein level of IL-1β 1, 2 and 6 weeks after SNI
compared to naive animals (Fig 2D), and between sham and SNI operated animal at 1 week
(Fig 2E). With these results we can conclude that NLRP3 inflammasome complex in the spinal
cord is not implicated in the neuropathic pain responses in the SNI model, neither is IL-1β.

Intrathecal LPS injection elicits changes in NLRP3 inflammasome
complex
To validate our negative results regarding NLRP3 involvement in neuropathic pain, we investi-
gated the inflammasome component in a central inflammatory insult. We used the intrathecal
administration of LPS model which leads to hyperalgesia [40–42] and to IL-1β production on
spinal cord slice preparation [42]. We designed these experiments as positive controls, in order
to confirm that the lack of regulation of IL-1β after SNI was not an experimental artefact. Wild-
type and NLRP3-/- mice were given 2 intrathecal doses of LPS (2 μg) or vehicle, in a 24 hours
interval [42]. mRNA expression of ASC, caspase-1 and IL-1β significantly increased after intra-
thecal LPS injection in wildtype and mutant mice. This increase is not statistically different in
NLRP3-/- mice when compared with wildtype controls (Fig 3A–3C). Similarly, protein levels of
IL-1β are upregulated after intrathecal injection of LPS, but no difference was observable
between NLRP3-/- mice and wildtype controls (Fig 3D).

Discussion
The main objective of our work has been to elucidate the participation of the NLRP3 inflam-
masome on the development and maintenance of neuropathic pain. We have used total knock-
out of NLRP3 in a model of peripheral nerve injury (SNI) and a model of acute and delayed
inflammatory pain. Our results showed that NLRP3 is not involved in basal sensitivity to
innocuous and painful stimuli, nor in formalin-induced pain responses or SNI pain-related
behaviour. We then observed that the elements of NLRP3 complex and its final product, IL-1β,
were not regulated in this model of nerve-injury pain. This unexpected negative result made us
control our methodology using a model of neuroinflammation (intrathecal LPS administra-
tion) in which we witnessed a large increase in IL-1β. The increase was however similar in WT
and NLRP3-KO mice.

Our working hypothesis of the NLRP3-IL-1β pathway involvement in pain models was
based on previous literature implicating IL-1β in pain. Briefly, IL-1β was first shown to induce
pain related behaviour when exogenously administered systemically [43], intraneurally in the
sciatic nerve [44] or intrathecally [21, 45]. Mechanistically the superfusion of IL-1β on organo-
typic culture of spinal cord slices induces increase in excitatory post-synaptic potentials (EPSP)
[46]. In rats, an increase of IL-1β at mRNA or protein level was observed after spinal nerve
injury [25, 26, 47], after hind paw and thoracic incisions [48], spinal cord injury [49], zymosan
or formalin injection [50] and in a cancer pain model [51]. In mice, an increase in IL-1β in the
spinal cord was observed following spinal cord injury [52], sciatic nerve injury [24] and in can-
cer pain models [53] and also in the sciatic nerve in the partial sciatic nerve injury [54].

Our lack of regulation of IL-1β in the spinal cord in the SNI model of mice is surprising. Dif-
ferences are well-known between species [55] and most abovementioned experiments were
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performed in rats. In mice, Da Silva et al. used a partial ligation of the sciatic nerve model in
mice and observed an increase in IL-1β in the spinal cord 7 days after the injury, the same time-
point as our study [24]. Besides they use a different strain, their model exhibits a different ana-
tomical relationship between injured and spared nerves from ours [56]. In partial sciatic nerve

Fig 2. Levels of NLRP3 components in spinal cord after SNI.mRNA levels of ASC (A), caspase-1 (B) and IL-1β (C) in spinal cord of mice following SNI
measured by qPCR. IL-1β protein levels in SNI surgery-bearing mice (D, E) measured by ELISA. No difference was observed between timepoints. P� 0.05,
ANOVA with Dunnett’s correction or Student’s t-test (E). Data are expressed as mean ± SD, n = 3–5 animals per group for panels A-D and n = 17 for panel E.

doi:10.1371/journal.pone.0133707.g002
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ligation, distal injured branches undergoing Wallerian degeneration are in contact with the
intact ones, partly responsible for the pain development, something that does not happen in
ours [33, 57].

The intrathecal LPS injection was performed as positive control for IL-1β increase and
indeed IL-1β was highly upregulated. The similar increase of IL-1β in mice lacking NLRP3 as
in wildtype animals suggests other sources for this interleukin. These could be the activation of
ASC-independent inflammasomes such as NLRC4 and NLRP1, that interact and activate
directly pro-caspase-1 [58, 59], caspase-8, which is activated after the stimulation of Toll-like
receptors 3 and 4 [60] or also other neutrophil-derived proteases such as cathepsin G, protein-
ase 3 and elastase [61]. In the context of neuropathic pain, metalloproteinases have been
described as a source of IL-1β for the induction and maintenance of hypersensitivity after SNL

Fig 3. Levels of NLRP3 components in spinal cord after intrathecal LPS injection.mRNA levels measured by qPCR of ASC (A), caspase-1 (B) and IL-
1β (C) in spinal cord of NLRP3-deficient mice or littermate controls injected intrathecally with LPS or vehicle. IL-1β protein levels in transgenic or control mice
injected with either vehicle or LPS (D) measured by ELISA. Differences were observed between vehicle and LPS-injected animals (*) P� 0.05, (**)
P� 0.01, ANOVA with Dunnett’s correction. Data are expressed as mean ± SD, n = 4–7 animals per group for all panels.

doi:10.1371/journal.pone.0133707.g003
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but no increase was observed in the spinal cord after the nerve injury [62]. In a peripheral
inflammatory pain model, NLRC4 and ASC but not NLRP3 were implicated in IL-1β increase
and behavioural responses [63].

To summarize, our findings show that neither NLRP3 nor IL-1β are implicated in the SNI
model of neuropathic pain. To discard the possibility of a technical problem, we show an
increase of IL-1β in an inflammatory model of spinal cord, and validated our qPCR results by
sequencing. We have also demonstrated that intrathecal LPS-derived IL-1β increase is NLRP3
independent and we hypothesize that other sources of this interleukin are implicated.
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