2,032 research outputs found
Take-off speed in jumping mantises depends on body size and a power-limited mechanism.
Many insects such as fleas, froghoppers and grasshoppers use a catapult mechanism to jump, and a direct consequence of this is that their take-off velocities are independent of their mass. In contrast, insects such as mantises, caddis flies and bush crickets propel their jumps by direct muscle contractions. What constrains the jumping performance of insects that use this second mechanism? To answer this question, the jumping performance of the mantis Stagmomantis theophila was measured through all its developmental stages, from 5 mg first instar nymphs to 1200 mg adults. Older and heavier mantises have longer hind and middle legs and higher take-off velocities than younger and lighter mantises. The length of the propulsive hind and middle legs scaled approximately isometrically with body mass (exponent=0.29 and 0.32, respectively). The front legs, which do not contribute to propulsion, scaled with an exponent of 0.37. Take-off velocity increased with increasing body mass (exponent=0.12). Time to accelerate increased and maximum acceleration decreased, but the measured power that a given mass of jumping muscle produced remained constant throughout all stages. Mathematical models were used to distinguish between three possible limitations to the scaling relationships: first, an energy-limited model (which explains catapult jumpers); second, a power-limited model; and third, an acceleration -: limited model. Only the model limited by muscle power explained the experimental data. Therefore, the two biomechanical mechanisms impose different limitations on jumping: those involving direct muscle contractions (mantises) are constrained by muscle power, whereas those involving catapult mechanisms are constrained by muscle energy.This is the final version of the article. It first appeared from The Company of Biologists via http://dx.doi.org/10.1242/jeb.13372
Mapping Polarization Fields in Al0.85In0.15N/AlN/GaN Heterostructures
Extended abstract of a paper presented at Microscopy and Microanalysis 2009 in Richmond, Virginia, USA, July 26 - July 30, 200
IN-SYNC. V. Stellar kinematics and dynamics in the Orion A Molecular Cloud
The kinematics and dynamics of young stellar populations enable us to test
theories of star formation. With this aim, we continue our analysis of the
SDSS-III/APOGEE IN-SYNC survey, a high resolution near infrared spectroscopic
survey of young clusters. We focus on the Orion A star-forming region, for
which IN-SYNC obtained spectra of stars. In Paper IV we used these
data to study the young stellar population. Here we study the kinematic
properties through radial velocities (). The young stellar population
remains kinematically associated with the molecular gas, following a
gradient along filament. However, near the center
of the region, the distribution is slightly blueshifted and asymmetric;
we suggest that this population, which is older, is slightly in foreground. We
find evidence for kinematic subclustering, detecting statistically significant
groupings of co-located stars with coherent motions. These are mostly in the
lower-density regions of the cloud, while the ONC radial velocities are
smoothly distributed, consistent with it being an older, more dynamically
evolved cluster. The velocity dispersion varies along the filament.
The ONC appears virialized, or just slightly supervirial, consistent with an
old dynamical age. Here there is also some evidence for on-going expansion,
from a --extinction correlation. In the southern filament, is
-- times larger than virial in the L1641N region, where we infer a
superposition along the line of sight of stellar sub-populations, detached from
the gas. On the contrary, decreases towards L1641S, where the
population is again in agreement with a virial state.Comment: 14 pages, 13 figures, ApJ accepte
Spontaneous time reversal symmetry breaking in the pseudogap state of high-Tc superconductors
When matter undergoes a phase transition from one state to another, usually a
change in symmetry is observed, as some of the symmetries exhibited are said to
be spontaneously broken. The superconducting phase transition in the underdoped
high-Tc superconductors is rather unusual, in that it is not a mean-field
transition as other superconducting transitions are. Instead, it is observed
that a pseudo-gap in the electronic excitation spectrum appears at temperatures
T* higher than Tc, while phase coherence, and superconductivity, are
established at Tc (Refs. 1, 2). One would then wish to understand if T* is just
a crossover, controlled by fluctuations in order which will set in at the lower
Tc (Refs. 3, 4), or whether some symmetry is spontaneously broken at T* (Refs.
5-10). Here, using angle-resolved photoemission with circularly polarized
light, we find that, in the pseudogap state, left-circularly polarized photons
give a different photocurrent than right-circularly polarized photons, and
therefore the state below T* is rather unusual, in that it breaks time reversal
symmetry11. This observation of a phase transition at T* provides the answer to
a major mystery of the phase diagram of the cuprates. The appearance of the
anomalies below T* must be related to the order parameter that sets in at this
characteristic temperature .Comment: 11 pages, 4 figure
Recommended from our members
Genome-wide association study in obsessive-compulsive disorder: results from the OCGAS.
Obsessive-compulsive disorder (OCD) is a psychiatric condition characterized by intrusive thoughts and urges and repetitive, intentional behaviors that cause significant distress and impair functioning. The OCD Collaborative Genetics Association Study (OCGAS) is comprised of comprehensively assessed OCD patients with an early age of OCD onset. After application of a stringent quality control protocol, a total of 1065 families (containing 1406 patients with OCD), combined with population-based samples (resulting in a total sample of 5061 individuals), were studied. An integrative analyses pipeline was utilized, involving association testing at single-nucleotide polymorphism (SNP) and gene levels (via a hybrid approach that allowed for combined analyses of the family- and population-based data). The smallest P-value was observed for a marker on chromosome 9 (near PTPRD, P=4.13 × 10(-)(7)). Pre-synaptic PTPRD promotes the differentiation of glutamatergic synapses and interacts with SLITRK3. Together, both proteins selectively regulate the development of inhibitory GABAergic synapses. Although no SNPs were identified as associated with OCD at genome-wide significance level, follow-up analyses of genome-wide association study (GWAS) signals from a previously published OCD study identified significant enrichment (P=0.0176). Secondary analyses of high-confidence interaction partners of DLGAP1 and GRIK2 (both showing evidence for association in our follow-up and the original GWAS study) revealed a trend of association (P=0.075) for a set of genes such as NEUROD6, SV2A, GRIA4, SLC1A2 and PTPRD. Analyses at the gene level revealed association of IQCK and C16orf88 (both P<1 × 10(-)(6), experiment-wide significant), as well as OFCC1 (P=6.29 × 10(-)(5)). The suggestive findings in this study await replication in larger samples
Amelioration of intestinal dysmotility and stasis by octreotide early after small-bowel autotransplantation in dogs
Intestinal dysmotility and stasis after intestinal transplantation are considered to promote bacterial overgrowth and translocation. Two prokinetic agents, KW5139 (13-leu-motilin) and the somatostatin analogue octreotide acetate, were studied to determine whether they can ameliorate intestinal dysmotility during the early postoperative period. Motility was recorded by multiple extraluminal strain-gauge transducers in 6 dogs on postoperative days 1, 3, 7, and 14. A barium meal study was performed with a separate group of 8 dogs on postoperative days 3 and 7. The agent KW5139 induced brief, weak contractions in the graft and had little effect on the dilated bowel; however, octreotide induced motor activity that propelled accumulated intestinal contents into the colon and reduced dilation of the transplanted bowel. Octreotide, but not KW5139, ameliorates intestinal dysmotility associated with bowel autotransplantation during the early postoperative period. Short-term administration of octreotide may be useful for the treatment of dysmotility following intestinal transplantation. © 1995, All rights reserved
Search For Heavy Pointlike Dirac Monopoles
We have searched for central production of a pair of photons with high
transverse energies in collisions at TeV using of data collected with the D\O detector at the Fermilab Tevatron in
1994--1996. If they exist, virtual heavy pointlike Dirac monopoles could
rescatter pairs of nearly real photons into this final state via a box diagram.
We observe no excess of events above background, and set lower 95% C.L. limits
of on the mass of a spin 0, 1/2, or 1 Dirac
monopole.Comment: 12 pages, 4 figure
Search for High Mass Photon Pairs in p-pbar --> gamma-gamma-jet-jet Events at sqrt(s)=1.8 TeV
A search has been carried out for events in the channel p-barp --> gamma
gamma jet jet. Such a signature can characterize the production of a
non-standard Higgs boson together with a W or Z boson. We refer to this
non-standard Higgs, having standard model couplings to vector bosons but no
coupling to fermions, as a "bosonic Higgs." With the requirement of two high
transverse energy photons and two jets, the diphoton mass (m(gamma gamma))
distribution is consistent with expected background. A 90(95)% C.L. upper limit
on the cross section as a function of mass is calculated, ranging from
0.60(0.80) pb for m(gamma gamma) = 65 GeV/c^2 to 0.26(0.34) pb for m(gamma
gamma) = 150 GeV/c^2, corresponding to a 95% C.L. lower limit on the mass of a
bosonic Higgs of 78.5 GeV/c^2.Comment: 9 pages, 3 figures. Replacement has new H->gamma gamma branching
ratios and corresponding new mass limit
Limits on Anomalous WWgamma and WWZ Couplings
Limits on the anomalous WWgamma and WWZ couplings are presented from a
simultaneous fit to the data samples of three gauge boson pair final states in
pbar-p collisions at sqrt(s)=1.8 TeV: Wgamma production with the W boson
decaying to enu or munu, W boson pair production with both of the W bosons
decaying to enu or munu, and WW or WZ production with one W boson decaying to
enu and the other W boson or the Z boson decaying to two jets. Assuming
identical WWgamma and WWZ couplings, 95 % C.L. limits on the anomalous
couplings of -0.30<Delta kappa<0.43 (lambda = 0) and -0.20<lambda<0.20 (Delta
kappa = 0) are obtained using a form factor scale Lambda = 2.0 TeV. Limits
found under other assumptions on the relationship between the WWgamma and WWZ
couplings are also presented.Comment: 13 pages, 3 figures, submitted to Physical Review
- …
