31 research outputs found

    Induction of Premature Senescence by Hsp90 Inhibition in Small Cell Lung Cancer

    Get PDF
    BACKGROUND: The molecular chaperone Hsp90 is a promising new target in cancer therapy and selective Hsp90 inhibitors are currently in clinical trials. Previously these inhibitors have been reported to induce either cell cycle arrest or cell death in cancer cells. Whether the cell cycle arrest is reversible or irreversible has not generally been assessed. Here we have examined in detail the cell cycle arrest and cell death responses of human small cell lung cancer cell lines to Hsp90 inhibition. METHODOLOGY/PRINCIPAL FINDINGS: In MTT assays, small cell lung cancer cells showed a biphasic response to the Hsp90 inhibitors geldanamycin and radicicol, with low concentrations causing proliferation arrest and high concentrations causing cell death. Assessment of Hsp90 intracellular activity using loss of client protein expression showed that geldanamycin concentrations that inhibited Hsp90 correlated closely with those causing proliferation arrest but not cell death. The proliferation arrest induced by low concentrations of geldanamycin was not reversed for a period of over thirty days following drug removal and showed features of senescence. Rare populations of variant small cell lung cancer cells could be isolated that had additional genetic alterations and no longer underwent irreversible proliferation arrest in response to Hsp90 inhibitors. CONCLUSIONS/SIGNIFICANCE: We conclude that: (1) Hsp90 inhibition primarily induces premature senescence, rather than cell death, in small cell lung cancer cells; (2) small cell lung cancer cells can bypass this senescence through further genetic alterations; (3) Hsp90 inhibitor-induced cell death in small cell lung cancer cells is due to inhibition of a target other than cytosolic Hsp90. These results have implications with regard to how these inhibitors will behave in clinical trials and for the design of future inhibitors in this class

    High-Content, High-Throughput Analysis of Cell Cycle Perturbations Induced by the HSP90 Inhibitor XL888

    Get PDF
    BACKGROUND: Many proteins that are dysregulated or mutated in cancer cells rely on the molecular chaperone HSP90 for their proper folding and activity, which has led to considerable interest in HSP90 as a cancer drug target. The diverse array of HSP90 client proteins encompasses oncogenic drivers, cell cycle components, and a variety of regulatory factors, so inhibition of HSP90 perturbs multiple cellular processes, including mitogenic signaling and cell cycle control. Although many reports have investigated HSP90 inhibition in the context of the cell cycle, no large-scale studies have examined potential correlations between cell genotype and the cell cycle phenotypes of HSP90 inhibition. METHODOLOGY/PRINCIPAL FINDINGS: To address this question, we developed a novel high-content, high-throughput cell cycle assay and profiled the effects of two distinct small molecule HSP90 inhibitors (XL888 and 17-AAG [17-allylamino-17-demethoxygeldanamycin]) in a large, genetically diverse panel of cancer cell lines. The cell cycle phenotypes of both inhibitors were strikingly similar and fell into three classes: accumulation in M-phase, G2-phase, or G1-phase. Accumulation in M-phase was the most prominent phenotype and notably, was also correlated with TP53 mutant status. We additionally observed unexpected complexity in the response of the cell cycle-associated client PLK1 to HSP90 inhibition, and we suggest that inhibitor-induced PLK1 depletion may contribute to the striking metaphase arrest phenotype seen in many of the M-arrested cell lines. CONCLUSIONS/SIGNIFICANCE: Our analysis of the cell cycle phenotypes induced by HSP90 inhibition in 25 cancer cell lines revealed that the phenotypic response was highly dependent on cellular genotype as well as on the concentration of HSP90 inhibitor and the time of treatment. M-phase arrest correlated with the presence of TP53 mutations, while G2 or G1 arrest was more commonly seen in cells bearing wt TP53. We draw upon previous literature to suggest an integrated model that accounts for these varying observations

    Co-occurence of Crenarchaeota, Thermoplasmata and methanogens in anaerobic sludge digesters

    No full text
    International audience16S rRNA Crenarchaeota and Thermoplasmata sequences retrieved from 22 anaerobic digesters were analysed. 4.8 and 0.53 % of archaeal sequences were simultaneously affiliated to these lineages. A core of 2 operational taxonomic units (OTUs) representing 0.6 to –33.6 % of all archaeal sequences were defined for the Crenarchaeotes and identified to already known but not yet cultivable organisms in almost half of the digesters sampled. For the Thermoplasmata, apparently less abundant with 0.7 to –4.7 % of the archaeal sequences, 3 OTUs were identified. We showed here that Crenarchaeotes coexist with methanogens and are particularly abundant when Arch I lineage (also called WSA2 by Hugenholtz) is dominant in digesters. Moreover, Thermoplasmata were detected when Crenarchaeota were present. Interactions between methanogens, Crenarchaeotea and Thermoplamata were thus discussed

    The Opitz syndrome gene product MID1 assembles a microtubule-associated ribonucleoprotein complex

    Get PDF
    Abstract Opitz BBB/G syndrome (OS) is a heterogenous malformation syndrome mainly characterised by hypertelorism and hypospadias. In addition, patients may present with several other defects of the ventral midline such as cleft lip and palate and congenital heart defects. The syndrome-causing gene encodes the X-linked E3 ubiquitin ligase MID1 that mediates ubiquitin-specific modification and degradation of the catalytic subunit of the translation regulator protein phosphatase 2A (PP2A). Here, we show that the MID1 protein also associates with elongation factor 1α (EF-1α) and several other proteins involved in mRNA transport and translation, including RACK1, Annexin A2, Nucleophosmin and proteins of the small ribosomal subunits. Mutant MID1 proteins as found in OS patients lose the ability to interact with EF-1α. The composition of the MID1 protein complex was determined by several independent methods: (1) yeast two-hybrid screening and (2) immunofluorescence, (3) a biochemical approach involving affinity purification of the complex, (4) co-fractionation in a microtubule assembly assay and (5) immunoprecipitation. Moreover, we show that the cytoskeleton-bound MID1/translation factor complex specifically associates with G- and U-rich RNAs and incorporates MID1 mRNA, thus forming a microtubule-associated ribonucleoprotein (RNP) complex. Our data suggest a novel function of the OS gene product in directing translational control to the cytoskeleton. The dysfunction of this mechanism would lead to malfunction of microtubule-associated protein translation and to the development of OS. Electronic supplementary material The online version of this article (doi:10.1007/s00439-007-0456-6) contains supplementary material, which is available to authorized users
    corecore